Highlights
- SAE+MHW synergistically impaired clams during reproduction.
- Progeny exhibited lasting developmental delays and high mortality.
- Long-term physiological dysfunction persisted into later life stages.
- Compound extremes threaten bivalve aquaculture resilience.
Abstract
Extreme environmental events, including sea acidity extremes (SAE) and marine heatwaves (MHW), pose increasing threats to coastal aquaculture species. This study examined the individual and combined effects of SAE and MHW on Manila clams (Ruditapes philippinarum) and their transgenerational impacts. Adults exposed to SAE+MHW showed reduced survival, decreased condition index, lower clearance rate (CR) and assimilation efficiency (AE), elevated ammonia excretion (ER), and negative scope for growth, indicating disrupted energy budgets. Reproductive output and gonadal development were also compromised. Offspring from stressed parents exhibited lower larval survival, stunted shell growth, reduced metamorphic success, smaller settlement size, reduced juvenile (6-month-old) survival rate and disrupted energy homeostasis, revealing persistent transgenerational impacts on development and energy homeostasis. These findings suggest that parental exposure to synergistic SAE+MHW alters energy allocation and may involve epigenetic mechanisms, ultimately impairing offspring fitness. Overall, our study demonstrates that compound extreme events can severely affect metabolic resilience and cross-generational performance in Manila clams, highlighting the need for multigenerational assessments, selective breeding, and aquaculture strategies to enhance climate resilience.
Continue reading ‘Transgenerational effects of extreme weather on Manila clam resilience: implications for aquaculture sustainability’





