Posts Tagged 'Porifera'



Sponge reefs of the British Columbia, Canada Coast: impacts of climate change and ocean acidification

Sponge reefs living in deeper shelf waters on the western margin of North America are somewhat insulated from surface water effects of localized ocean warming but are susceptible to increasing hypoxia associated with ocean stratification and increasing upwelling. The largest reef complexes are projected to experience increasing upwelling and low-oxygen events in the future as part of the observed and projected changes in ocean ventilation accompanying increased atmospheric carbon dioxide concentrations. Inshore and shallow reefs are subjected to surface water warming in fiords. Surface water productivity is anticipated to change slightly likely having limited negative impact on the sponge reefs which are adapted to relatively low-nutrient situations. It is unknown the extent to which glass sponges might be resilient to lower oxygen conditions. While filtration is an energetically costly method of feeding, glass sponges appear to be adapted to reduce their energetic needs by using ambient flow to assist filtration. Populations that experience extreme hypoxia in some fiords may be extirpated by extreme anoxic events. Ocean acidification will not have as large an effect on the siliceous skeleton sponges as it will on corals and other carbonate-dependent organisms though it is possible changing pH will affect tissue functioning and homeostasis by compromising membrane pumps. Hexactinellid sponges and sponge reefs have been resilient to changing climate and ocean environments in the geologic past.

Continue reading ‘Sponge reefs of the British Columbia, Canada Coast: impacts of climate change and ocean acidification’

Molecular responses of sponges to climate change

We live in a time of concern regarding predicted environmental damage due to climate change, i.e. sea temperature increase and a reduction in ocean pH. Such changes will have severe consequences for at least some marine organisms. Developments in molecular and genomic techniques allow for genome-wide comparisons of genes and proteins that may be impacted by such changes with knock-on consequences for cell and organism function. Understanding of impacts at the molecular level is important to understand how organisms will respond to changes and to develop conservation strategies accordingly. Despite sponges having a very simple body plan, they possess gene diversity and genome complexity that mirrors other metazoa. The cellular stress response and adaptation of sponges to increased temperature and low pH are varied and diverse with many genes implicated and their expression patterns complex. Survival thresholds differ between species in their tolerance to temperature increase and lowering of ocean pH. The expression patterns of a variety of genes have been investigated particularly with regard to change in temperature but in few sponge species. Likewise genome and transcriptome data exists for few species, and even fewer studies focus on applying these approaches to stress response. Despite the requirement for more studies in this area, existing data suggests that some sponge species will be severely impacted if climate change predictions hold, while other species will adapt and thrive.

Continue reading ‘Molecular responses of sponges to climate change’

Climate change and sponges: an introduction

This chapter provides an introduction to our current understanding of the two most important features of climate change affecting marine sponges—ocean warming and ocean acidification. Of these two stressors, thermal stress associated with ocean warming is likely to have the greatest influence on the sponge assemblages through the induction of diseases and mortality by a decrease in the efficacy of defense mechanisms and development of pathogens. However, there is a considerable variability among species in their responses to increasing temperature, and some species have persisted during episodes of unusually high temperature. Conspicuous sublethal effects have also been described. Thermal stress can limit sponge reproductive capability and dispersal by causing the reabsorption of spermatic cysts and oocytes and by the disruption of the feedback mechanism that prevents the release of asexual propagules when ecological factors are unsuitable for propagule survival. Thermal stress also can affect sponge-feeding behavior by increasing or decreasing filtration rates and by decreasing choanocyte chamber density and size, causing shifts in the microbial communities of the host sponge, and can also increase the production of heat shock proteins, which leads to rapid upregulation of genes involved in cellular damage repair. The effects of ocean acidification on sponges are much less known, but recent studies have demonstrated the resistance of certain species to lowered pH conditions. It seems that this capacity to withstand OA lies in part in the ability of sponges to restructure their host-associated microbiomes mainly by acquiring new microbial components via horizontal transmission. The apparent resilience of some sponge species and the sensitivity of others highlight the need to understand the molecular basis of sponge responses to environmental stressors in order to determine if they will be able to adapt to rapidly changing ocean conditions. Future research focused on transcriptomic and metabolomic responses using genomic approaches will facilitate the assessment of molecular stress responses at different sponge life history stages.

Continue reading ‘Climate change and sponges: an introduction’

Combined effects of experimental acidification and eutrophication on reef sponge bioerosion rates

Health of tropical coral reefs depends largely on the balance between constructive (calcification and cementation) and destructive forces (mechanical-chemical degradation). Gradual increase in dissolved CO2 and the resulting decrease in carbonate ion concentration (“ocean acidification”) in ocean surface water may tip the balance toward net mass loss for many reefs. Enhanced nutrients and organic loading in surface waters (“eutrophication”), may increase the susceptibility of coral reef and near shore environments to ocean acidification. The impacts of these processes on coral calcification have been repeatedly reported, however the synergetic effects on bioerosion rates by sponges are poorly studied. Erosion by excavating sponges is achieved by a combination of chemical dissolution and mechanical chip removal. In this study, Cliona caribbaea, a photosymbiont-bearing excavating sponge widely distributed in Caribbean reef habitats, was exposed to a range of CO2 concentrations, as well as different eutrophication levels. Total bioerosion rates, estimated from changes in buoyant weights over 1 week, increased significantly with pCO2 but not with eutrophication. Observed chemical bioerosion rates were positively affected by both pCO2 and eutrophication but no interaction was revealed. Net photosynthetic activity was enhanced with rising pCO2 but not with increasing eutrophication levels. These results indicate that an increase in organic matter and nutrient renders sponge bioerosion less dependent on autotrophic products. At low and ambient pCO2, day-time chemical rates were ~50% higher than those observed at night-time. A switch was observed in bioerosion under higher pCO2 levels, with night-time chemical bioerosion rates becoming comparable or even higher than day-time rates. We suggest that the difference in rates between day and night at low and ambient pCO2 indicates that the benefit of acquired energy from photosynthetic activity surpasses the positive effect of increased pCO2 levels at night due to holobiont respiration. This implies that excavation must cost cellular energy, by processes, such as ATP usage for active Ca2+ and/or active proton pumping. Additionally, competition for dissolved inorganic carbon species may occur between bioerosion and photosynthetic activity by the symbionts. Either way, the observed changing role of symbionts in bioerosion can be attributed to enhanced photosynthetic activity at high pCO2 levels.

Continue reading ‘Combined effects of experimental acidification and eutrophication on reef sponge bioerosion rates’

Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge

Excavating sponges are prominent bioeroders on coral reefs that in comparison to other benthic organisms may suffer less or may even benefit from warmer, more acidic and more eutrophic waters. Here, the photosymbiotic excavating sponge Cliona orientalis from the Great Barrier Reef was subjected to a prolonged simulation of both global and local environmental change: future seawater temperature, partial pressure of carbon dioxide (as for 2100 summer conditions under “business-as-usual” emissions), and diet supplementation with particulate organics. The individual and combined effects of the three factors on the bioerosion rates, metabolic oxygen and carbon flux, biomass change and survival of the sponge were monitored over the height of summer. Diet supplementation accelerated bioerosion rates. Acidification alone did not have a strong effect on total bioerosion or survival rates, yet it co-occurred with reduced heterotrophy. Warming above 30 °C (+2.7 °C above the local maximum monthly mean) caused extensive bleaching, lower bioerosion, and prevailing mortality, overriding the other factors and suggesting a strong metabolic dependence of the sponge on its resident symbionts. The growth, bioerosion capacity and likelihood of survival of C. orientalis and similar photosymbiotic excavating sponges could be substantially reduced rather than increased on end-of-the-century reefs under “business-as-usual” emission profiles.

Continue reading ‘Sponge bioerosion on changing reefs: ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge’

Feeding in deep-sea demosponges: influence of abiotic and biotic factors

In shallow benthic communities, sponges are widely recognized for their ability to contribute to food webs by cycling nutrients and mediating carbon fluxes through filter feeding. In comparison, little is known about filter feeding in deep-sea species and how it may be modulated by environmental conditions. Here, a rare opportunity to maintain live healthy deep-sea sponges for an extended period led to a preliminary experimental study of their feeding metrics. This work focused on demosponges collected from the continental slope of eastern Canada at ~1000 m depth. Filtration rates (as clearance of phytoplankton cells) at holding temperature (6 °C) were positively correlated with food particle concentration, ranging on average from 18.8 to 160.6 cells ml-1 h-1 at nominal concentrations of 10 000 to 40 000 cells ml-1. Cell clearance was not significantly affected by decreasing seawater temperature, from 6 °C to 3 °C or 0 °C, although two of the sponges showed decreased filtration rates. Low pH (~7.5) and the presence of a predatory sea star markedly depressed or inhibited feeding activity in all sponges tested. While performed under laboratory conditions on a limited number of specimens, this work highlights the possible sensitivity of deep-sea demosponges to various types and levels of biotic and abiotic factors, inferring a consequent vulnerability to natural and anthropogenic disturbances.

Continue reading ‘Feeding in deep-sea demosponges: influence of abiotic and biotic factors’

Climate change and tropical sponges: The effect of elevated pCO₂ and temperature on the sponge holobiont

As atmospheric CO₂ concentrations rise, associated ocean warming (OW) and ocean acidification (OA) are predicted to cause declines in reef-building corals globally, shifting reefs from coral-dominated systems to those dominated by less sensitive species. Sponges are important structural and functional components of coral reef ecosystems, but despite increasing field-based evidence that sponges may be ‘winners’ in response to environmental degradation, our understanding of how they respond to the combined effects of OW and OA is limited. This PhD thesis explores the response of four abundant Great Barrier Reef species – the phototrophic Carteriospongia foliascens and Cymbastela coralliophila and the heterotrophic Stylissa flabelliformis and Rhopaloeides odorabile to OW and OA levels predicted for 2100, under two CO₂ Representative Concentration Pathways (RCPs). The overall aim of this research is to bridge gaps in our understanding of how these important coral reef organisms will respond to projected climate change, to begin to explore whether a sponge dominated state is a possible future trajectory for coral reefs.

To determine the tolerance of adult sponges to climate change, these four species were exposed to OW and OA in the Australian Institute of Marine Science’s (AIMS) National Sea Simulator (SeaSim) in a 3-month experimental study. The first data chapter explores the physiological responses of these sponges to OW and OA to gain a broad understanding of sponge holobiont survival and functioning under these conditions. In this chapter I also address the hypothesis that phototrophic and heterotrophic sponges will exhibit differential responses to climate change. In the second and third data chapters I explore the cellular lipid and fatty acid composition of sponges, and how these biochemical constituents vary with OW and OA. Lipids and fatty acids are not only vital energy stores, they form the major components of cell membranes, and the structure and composition of these biochemical constituents ultimately determines the integrity and physiological competency of a cell. Therefore through these analyses I aimed to determine how OW and OA affects the metabolic balance of sponges, and to understand mechanisms underpinning observed systemic sponge responses. Finally, to provide greater insight into the population level impacts of climate change on tropical sponges, in the last data chapter I explore the response of the phototrophic species Carteriospongia foliascens to OW/OA throughout its developmental stages.

I found that while sponges can generally tolerate climate change scenarios predicted under the RCP6.0 conditions for 2100 (30ºC/ pH 7.8), environmental projections for the end of this century under the RCP8.5 (31.5ºC/ pH 7.6) will have significant implications for their survival. Temperature effects were much stronger than OA effects for all species; however, phototrophic and heterotrophic species responded differently to OA. Elevated pCO₂ exacerbated temperature stress in heterotrophic sponges but somewhat ameliorated thermal stress in phototrophic species. Furthermore, sponges with siliceous spiculated skeletons resisted the RCP 8.5 conditions for longer than the aspiculate species. Biochemical analysis revealed that spiculated species also have greater cell membrane support features, which is likely to contribute to the observed stress tolerance. I also found that the additional energy available to phototrophic sponges under OA conditions may be used for investment into cell membrane support, providing protection against thermal stress. Finally, larval survival and settlement success of C. foliascens was unaffected by OW and OA treatments, and juvenile sponges exhibited greater tolerance than their adult counterparts, again with evidence that OA reduces OW stress for some of these life stages.

Based on the species studied here, this thesis confirms that sponges are better able to deal with OW and OA levels predicted for 2100 under RCP6.0, compared to many corals for which survival in a high CO₂ world requires OW to remain below 1.5°C. This suggests sponges may be future ‘winners’ on coral reefs under global climate change. However, if CO₂ atm concentrations reach levels predicted under RCP8.5, the prognosis for sponge survival by the end of this century changes as inter-species sponge tolerances to OW and OA differ. Under this projection it is likely we will also start to see a shift in sponge populations to those dominated by phototrophic sponges with siliceous spiculated skeletons. Overall, this thesis gives a holistic view of OW and OA impacts on tropical sponges and provides the basis from which to explore the potential for a sponge-coral regime shift in a high CO₂ world.

Continue reading ‘Climate change and tropical sponges: The effect of elevated pCO₂ and temperature on the sponge holobiont’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,292,135 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book