Posts Tagged 'corals'



Ecological and socioeconomic strategies to sustain Caribbean coral reefs in a high-CO2 world

The Caribbean and Western Atlantic region hosts one of the world’s most diverse geopolitical regions and a unique marine biota distinct from tropical seas in the Pacific and Indian Oceans. While this region varies in human population density, GDP and wealth, coral reefs, and their associated ecosystem services, are central to people’s livelihoods. Unfortunately, the region’s reefs have experienced extensive degradation over the last several decades. This degradation has been attributed to a combination of disease, overfishing, and multiple pressures from other human activities. Furthermore, the Caribbean region has experienced rapid ocean warming and acidification as a result of climate change that will continue and accelerate throughout the 21st century. It is evident that these changes will pose increasing threats to Caribbean reefs unless imminent actions are taken at the local, regional and global scale. Active management is required to sustain Caribbean reefs and increase their resilience to recover from acute stress events. Here, we propose local and regional solutions to halt and reverse Caribbean coral reef degradation under ongoing ocean warming and acidification. Because the Caribbean has already experienced high coral reef degradation, we suggest that this region may be suitable for more aggressive interventions than might be suitable for other regions. Solutions with direct ecological benefits highlighted here build on existing knowledge of factors that can contribute to reef restoration and increased resilience in the Caribbean: (1) management of water quality, (2) reduction of unsustainable fishing practices, (3) application of ecological engineering, and (4) implementing marine spatial planning. Complementary socioeconomic and governance solutions include: (1) increasing communication and leveraging resources through the establishment of a regional reef secretariat, (2) incorporating reef health and sustainability goals into the blue economy plans for the region, and (3) initiating a reef labelling program to incentivize corporate partnerships for reef restoration and protection to sustain overall reef health in the region.

Continue reading ‘Ecological and socioeconomic strategies to sustain Caribbean coral reefs in a high-CO2 world’

Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans

Coral reefs have great biological and socioeconomic value, but are threatened by ocean acidification, climate change and local human impacts. The capacity for corals to adapt or acclimatize to novel environmental conditions is unknown but fundamental to projected reef futures. The coral reefs of Kāne‘ohe Bay, Hawai‘i were devastated by anthropogenic insults from the 1930s to 1970s. These reefs experience naturally reduced pH and elevated temperature relative to many other Hawaiian reefs which are not expected to face similar conditions for decades. Despite catastrophic loss in coral cover owing to human disturbance, these reefs recovered under low pH and high temperature within 20 years after sewage input was diverted. We compare the pH and temperature tolerances of three dominant Hawaiian coral species from within Kāne‘ohe Bay to conspecifics from a nearby control site and show that corals from Kāne‘ohe are far more resistant to acidification and warming. These results show that corals can have different pH and temperature tolerances among habitats and understanding the mechanisms by which coral cover rebounded within two decades under projected future ocean conditions will be critical to management. Together these results indicate that reducing human stressors offers hope for reef resilience and effective conservation over coming decades.

Continue reading ‘Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans’

The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica

Primnoa pacifica is the most ecologically important coral species in the North Pacific Ocean and provides important habitat for commercially important fish and invertebrates. Ocean acidification (OA) is more rapidly increasing in high-latitude seas because anthropogenic CO2 uptake is greater in these regions. This is due to the solubility of CO2 in cold water and the reduced buffering capacity and low alkalinity of colder waters. Primnoa pacifica colonies were cultured for six to nine months in either pH 7.55 (predicted Year 2100 pH levels) or pH 7.75 (Control). Oocyte development and fecundity in females, and spermatocyst stages in males were measured to assess the effects of pH on gametogenesis. Oocyte diameters were 13.6% smaller and fecundities were 30.9% lower in the Year 2100 samples. A higher proportion of vitellogenic oocytes (65%) were also reabsorbed (oosorption) in the Year 2100 treatment. Lower pH appeared to advance the process of spermatogenesis with a higher percentage of later stage sperm compared to Control. There was a laboratory effect observed in all measurement types, however this only significantly affected the analyses of spermatogenesis. Based on the negative effect of acidification on oogenesis and increased rate of oosorption, successful spawning could be unlikely in an acidified ocean. If female gametes were spawned, they are likely to be insufficiently equipped to develop normally, based on the decreased overall size and therefore subsequent limited amount of lipids necessary for successful larval development.

Continue reading ‘The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica’

Investigating marine bio‐calcification mechanisms in a changing ocean with in vivo and high‐resolution ex vivo Raman spectroscopy

Ocean acidification poses a serious threat to marine calcifying organisms, yet experimental and field studies have found highly diverse responses among species and environments. Our understanding of the underlying drivers of differential responses to ocean acidification is currently limited by difficulties in directly observing and quantifying the mechanisms of bio‐calcification. Here, we present Raman spectroscopy techniques for characterizing the skeletal mineralogy and calcifying fluid chemistry of marine calcifying organisms such as corals, coralline algae, foraminifera, and fish (carbonate otoliths). First, our in vivo Raman technique is the ideal tool for investigating non‐classical mineralization pathways. This includes calcification by amorphous particle attachment, which has recently been controversially suggested as a mechanism by which corals resist the negative effects of ocean acidification. Second, high‐resolution ex vivo Raman mapping reveals complex banding structures in the mineralogy of marine calcifiers, and provides a tool to quantify calcification responses to environmental variability on various timescales from days to years. We describe the new insights into marine bio‐calcification that our techniques have already uncovered, and we consider the wide range of questions regarding calcifier responses to global change that can now be proposed and addressed with these new Raman spectroscopy tools.

Continue reading ‘Investigating marine bio‐calcification mechanisms in a changing ocean with in vivo and high‐resolution ex vivo Raman spectroscopy’

Sponge bioerosion versus aqueous pCO2: morphometric assessment of chips and etching fissures

Bioeroding sponges are important macroborers that chemically cut out substrate particles (chips) and mechanically remove them, thereby contributing to reef-associated sediment. These chemical and mechanical proportions vary with elevated levels of partial pressure of carbon dioxide (pCO2). To assess related impacts, the morphometric parameters “chip diameter” and “etching fissure width” were analyzed for Cliona orientalis Thiele, 1900, hypothesizing that their dimensions would differ with different pCO2 exposures (72 h at ca. 400, 750 and 1700 μatm). Under ambient conditions, we obtained a mean chip diameter of 21.6 ± 0.7 μm and a mean fissure width of 0.29 ± 0.01 μm. Chips were evenly distributed across the medium and coarse silt fractions regardless of treatment. We could not find a reliable pCO2 treatment effect for chip diameter and fissure width, but we observed strong data variability not related to our key questions. A hierarchical data design further reduced the test power. Fissure width was the more sensitive, but also more variable parameter. Sample size analyses nevertheless indicated that we had processed enough data. Thus, we reject our scenario of an increase in fissure width and consequent reduction in chip size to explain why chemical sponge bioerosion increases more strongly than the mechanical counterpart. Instead, we propose that a lowered ambient pH may favor respiratory acid build-up in the sponge tissue, possibly leading to a less localized bioerosion, causing bias towards more chemical bioerosion. Overall, this does not seem to affect the morphometry of sponge chips and the quality of sponge-generated sediment.

Continue reading ‘Sponge bioerosion versus aqueous pCO2: morphometric assessment of chips and etching fissures’

Anthropogenic ocean warming and acidification recorded by Sr/Ca, Li/Mg, δ11B and B/Ca in Porites coral from the Kimberley region of northwestern Australia

Highlights

• Ocean warming has accelerated since the 1970s in the nearshore Kimberley.

• Coral calcification remains less affected and ‘normal’ seasonal coral internal carbonate chemistry is observed.

• Under intensified warming, coral’s ability to concentrate metabolic DIC has been reduced.

• Ocean acidification has led to the secular reduction of pHcf.

Abstract

The impact of climate changes on corals living in naturally extreme environments is poorly understood but crucial to longer-term sustainability of coral reefs. Here we report century-long temperature (Sr/Ca and Li/Mg) and calcifying fluid (CF) carbonate chemistry (δ11B and B/Ca) records for a long-lived (1919 to 2016) Porites coral from the high thermally variable Kimberley region of northwestern Australia. We investigate how increasing temperatures and ocean acidification are manifested in the carbonate chemistry of coral’s CF and impacts of climate change on calcification. Using Sr/Ca and Li/Mg multiproxy we show that annual temperature in the nearshore Kimberley exhibited a gradual increase (0.009 ± 0.003 °C/yr) from the 1920s onward. However for the most recent years (2000–2015) more rapid summer warming (0.05 ± 0.01 °C/yr) are registered, indicative of intensified warming. Despite that, we find no significant trend for calcification rate of this coral over the past century, as well as ‘normal’ seasonal variability in coral’s CF carbonate chemistry. Importantly, the coral’s ability to concentrate inorganic carbon seems to be affected by recent warming, with reduced DICcf observed during 2008 to 2015, while the minimally-affected pHcf acts to compensate the decreases of DICcf with the calcification rate showing only slight decrease. Additionally, we also find that ocean acidification has clearly led to the long-term reduction in the pH of the CF.

Continue reading ‘Anthropogenic ocean warming and acidification recorded by Sr/Ca, Li/Mg, δ11B and B/Ca in Porites coral from the Kimberley region of northwestern Australia’

Corallivory in the Anthropocene: interactive effects of anthropogenic stressors and corallivory on coral reefs

Corallivory is the predation of coral mucus, tissue, and skeleton by fishes and invertebrates, and a source of chronic stress for many reef-building coral species. Corallivores often prey on corals repeatedly, and this predation induces wounds that require extensive cellular resources to heal. The effects of corallivory on coral growth, reproduction, and community dynamics are well-documented, and often result in reduced growth rates and fitness. Given the degree of anthropogenic pressures that threaten coral reefs, it is now imperative to focus on understanding how corallivory interacts with anthropogenic forces to alter coral health and community dynamics. For example, coral bleaching events that stem from global climate change often reduce preferred corals species for many corallivorous fishes. These reductions in preferred prey may result in declines in populations of more specialized corallivores while more generalist corallivores may increase. Corallivory may also make corals more susceptible to thermal stress and exacerbate bleaching. At local scales, overfishing depletes corallivorous fish stocks, reducing fish corallivory and bioerosion, whilst removing invertivorous fishes and allowing population increases in invertebrate corallivores (e.g., urchins, Drupella spp.). Interactive effects of local stressors, such as overfishing and nutrient pollution, can alter the effect of corallivory by increasing coral-algal competition and destabilizing the coral microbiome, subsequently leading to coral disease and mortality. Here, we synthesize recent literature of how global climate change and local stressors affect corallivore populations and shape the patterns and effect of corallivory. Our review indicates that the combined effects of corallivory and anthropogenic pressures may be underappreciated and that these interactions often drive changes in coral reefs on scales from ecosystems to microbes. Understanding the ecology of coral reefs in the Anthropocene will require an increased focus on how anthropogenic forcing alters biotic interactions, such as corallivory, and the resulting cascading effects on corals and reef ecosystems.

Continue reading ‘Corallivory in the Anthropocene: interactive effects of anthropogenic stressors and corallivory on coral reefs’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,272,780 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book