Posts Tagged 'Indian'

Control of CaCO3 dissolution at the deep seafloor and its consequences

Prediction of the neutralization of anthropogenic CO2 in the oceans and the interpretation of the calcite record preserved in deep-sea sediments requires the use of the correct kinetics for calcite dissolution. Dissolution rate information from suspended calcite-grain experiments consistently indicates a high-order nonlinear dependence on undersaturation, with a well-defined rate constant. Conversely, stirred-chamber and rotating-disc dissolution experiments consistently indicate linear kinetics of dissolution and a strong dependence on the fluid flow velocity. Here, we resolve these seeming incongruities and establish reliably the kinetic controls on deep-sea calcite dissolution. By equating the carbonate-ion flux from a dissolving calcite bed, governed by laboratory-based nonlinear kinetics, to the flux across typical diffusive boundary layers (DBL) at the seafloor, we show that the net flux is influenced both by boundary layer and bed processes, but that flux is strongly dominated by the rate of diffusion through the DBL. Furthermore, coupling that calculation to an equation for the calcite content of the seafloor, we show that a DBL-transport dominated model adeptly lysoclines adeptly, i.e., CaCO3 vs ocean depth profiles, observed across the oceans. Conversely, a model with only sediment-side processes fails to predict lysoclines in all tested regions. Consequently, the past practice of arbitrarily altering the calcite-dissolution rate constant to allow sediment-only models to fit calcite profiles constitutes confirmation bias. From these results, we hypothesize that the reason suspended-grain experiments and bed experiments yield different reaction orders is that dissolution rates of individual grains in a bed are fast enough to maintain porewaters at or close to saturation, so that the exact reaction order cannot be measured and dissolution appears to be linear. Finally, we provide a further test of DBL-transport dominated calcite dissolution by successfully predicting, not fitting, the in-situ pH profiles observed at four stations reported in the literature.

Continue reading ‘Control of CaCO3 dissolution at the deep seafloor and its consequences’

Low CO2 evasion rate from the mangrove surrounding waters of Sundarban

Globally, water bodies adjacent to mangroves are considered sources of atmospheric CO2. We directly measured the partial pressure of CO2 in water, pCO2(water), and other related biogeochemical parameters with very high (1-min) temporal resolution at Dhanchi Island in India’s Sundarbans during the post-monsoon season. We used elemental, stable isotopic, and optical signatures to investigate the sources of dissolved inorganic carbon (DIC) and organic matter (OM) in these waters. Diel mean pCO2(water) was marginally oversaturated in creeks (efflux, 69 ± 180 µmol m−2 h−1) and undersaturated along the island boundary and in the main river (influx, −17 ± 53 and −31 ± 73 µmol m−2 h−1, respectively) compared to the atmospheric CO2 concentration. The possibility in earlier studies of over- or underestimating the CO2 flux because of an inability to capture tidal minima and maxima was minimized in the present study, which confirmed that the waters surrounding mangroves in this region can act as a sink or a very weak source of atmospheric CO2. δ13C values for DIC suggest a mixed DIC source, and a three-end-member stable isotope mixing model and optical signatures of OM suggest negligible riverine contribution of freshwater to OM. We conclude that the CO2 sink or weak source character was due to a reduced input of riverine freshwater [which usually has high pCO2(water)] and the predominance of pCO2-lean water from the coastal sea, which eventually increases the buffering capacity of the water as evidenced by the Revelle factor. Up-scaling the CO2 flux data for all seasons and the entire estuary, we propose that the CO2 evasion rate observed in this study is much lower than the recently estimated world average. Mangrove areas having such low emissions should be given due emphasis when up-scaling the global mangrove carbon budget from regional observations.

Continue reading ‘Low CO2 evasion rate from the mangrove surrounding waters of Sundarban’

Role of seaweeds in neutralizing the impact of seawater acidification- A laboratory study with beached shells of certain bivalves and spines of a sea urchin

Ocean acidification is one of the major impacts of climate change in sea which is manifested by the decrease in hydrogen ion concentration (pH) of seawater mainly due to increased uptake of CO2 and reduction in carbonate ions. This is a report on the dissolution rate of dead shells of four marine bivalves and spines of a sea urchin when treated with different levels of CO2 dissolved in seawater for 48 hours which was measured gravimetrically. Dissolution of dead shells expressed as reduction in shell weight was directly proportional to the concentration of dissolved CO2. Live thallus of green seaweed Chaetomorpha antennina did reduce the magnitude of dissolution rates (P<0.05) of all the shells and spines considerably as well as the change in pH of ambient seawater due to the addition of CO2. The remedial property of seaweeds was more effective at lower concentrations of dissolved CO2. The induced change in pH was restored by green seaweed only at concentrations above 250 ppm. Although we noticed strong impact of dissolved CO2 on the dead shells of Mactrinula plicataria even at 100 ppm level, the remedial action by the green seaweed was maximum in Siliqua radiata followed by Perna viridis. Results of this laboratory study shows the positive role of seaweeds in neutralizing the acidification impacts.

Continue reading ‘Role of seaweeds in neutralizing the impact of seawater acidification- A laboratory study with beached shells of certain bivalves and spines of a sea urchin’

Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients

Boron isotope systematics of planktonic foraminifera from core-top sediments and culture experiments have been studied to investigate the sensitivity of δ11B of their calcite tests to seawater pH. However, our knowledge of the relationship between δ11B and pH remains incomplete for several taxa. Thus, to expand the potential scope of application of this proxy, we report data for 7 different species of planktonic foraminifera from sediment core-tops. We utilize a method for the measurement of small samples of foraminifera and calculate the δ11B-calcite sensitivity to pH for Globigerinoides ruber, Trilobus sacculifer (sacc or w/o sacc), Orbulina universa, Pulleniatina obliquiloculata, Neogloboquadrina dutertrei, Globorotalia menardii and Globorotalia tumida, including for unstudied coretops and species. The sensitivity of δ11Bcarbonate to δ11Bborate (eg. Δδ11Bcarbonate/Δδ11Bborate) in core-tops is close to unity. Deep-dwelling species closely follow the core-top calibration for O. universa, which is attributed to respiration-driven microenvironments, likely caused by light limitation for symbiont-bearing foraminifera. These taxa have diverse ecological preferences and are from sites that span a range of oceanographic regimes, including some that are in regions of air-sea equilibrium and others that are out of equilibrium with the atmosphere. Our data support the premise that utilizing boron isotope measurements of multiple species within a sediment core can be utilized to constrain vertical profiles of pH and pCO2 at sites spanning different oceanic regimes, thereby constraining changes in vertical pH gradients and yielding insights into the past behavior of the oceanic carbon pump.

Continue reading ‘Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients’

A seasonal evaluation of dynamics of an aquatic ecosystem, Kochi, Kerala, India

Studies on the hydrological features of the marine and estuarine environment is of great importance since the general distribution, migration and relative abundance of marine and estuarine organisms are greatly influenced by the physicochemical parameters. Different taxa are affected by wide spectrum of limnological conditions such as pH, nutrient concentrations and salinity. Their number was found to be reduced due to pollution. Variation in pH, salinity temperature regime, solutes, flow, turbidity, dissolved oxygen, substrate composition or pollution level affects fish assemblage. The gain or loss of certain species is a common consequence of the environmental change. The rapid industrialization and the increase in population around the Cochin estuary have resulted in the discharge of a heavy load of the inorganic and organic wastes. Pollution and encroachment are mainly responsible for deterioration of water quality in the water bodies of Kerala.

Continue reading ‘A seasonal evaluation of dynamics of an aquatic ecosystem, Kochi, Kerala, India’

Response of corals Acropora pharaonis and Porites lutea to changes in pH and temperature in the Gulf

Coral reefs are harboring a large part of the marine biodiversity and are important ecosystems for the equilibrium of the oceans. As a consequence of anthropogenic CO2 emission, a drop in pH and an increase in seawater temperature is observed in the Gulf coastal waters that potentially threaten coral assemblages. An experimental study was conducted on two species of corals to assess the effect of ocean warming and ocean acidification on the net calcification rate. Two pH conditions 8.2 and 7.5 and three temperatures, 22.5, 27.5 and 32.5 °C, were considered. Net calcification rates were measured using 45Ca radiotracer. Both temperature and pH had a significant effect on net calcification rates following a similar pattern for both species. The highest calcification rate was observed at low temperature and high pH. Increased temperature and decreased pH led to a decrease in net calcification rates. An interactive effect was observed as the effect of pH decreased with increasing temperature. However, the two species of coral were able to calcify in all the tested combination of temperature and pH suggesting that they are adapted to short term changes in temperature and pH. Ability to calcify even at a high temperature of 32.5 °C that is identical to the summertime Gulf seawater temperature under both the ambient and low pH condition with no mortalities, raises a question: are these corals adapted to high seawater temperatures and low pH? More in-depth assessments will be required to confirm if this is an adaptation to higher temperatures in Persian Gulf corals.

Continue reading ‘Response of corals Acropora pharaonis and Porites lutea to changes in pH and temperature in the Gulf’

An ecotoxicological study on physiological responses of Archaster typicus to salinity, thermal and ocean acidification stressors

Environmental biomarkers, also known as early warning signals, have increasingly
become a subject of interest in environmental studies. The common sea star, Archaster typicus, found in shallow sandy habitats associated with coral reefs in Singapore, was utilised to study the effects of varying treatment conditions of salinity, temperature and pH. Treatment conditions were derived from predicted future scenarios of thermal and ocean acidification conditions. Experiments were conducted to determine physiological responses of sea stars that were subjected to treatments over 24h (acute) and 120h (chronic) exposures. The biomarker responses examined included righting behaviour (time taken to right after being overturned), burrowing time and feeding responses (time
taken to close stomach/mouth plate) in experimental sea stars. To validate results of physiological biomarkers, two other biomarker responses were measured from coelomic fluid extracted from the experimental sea stars. These were the cellular lysosome integrity response (Neutral Red Retention time, NRRT) and the biochemical Ferric Reducing Antioxidant Power (FRAP) assay. In acute exposure experiments, results indicated that sea stars exhibited significant differences in physiological responses under various salinity, temperature and pH treatments. At chronic exposure regimes, lethal effects were more evident, with higher mortality rates observed in all salinity and temperature treatment regimes. Results from salinity treatments showed that physiological responses in sea stars were significantly impaired at treatments of 15‰ and 50‰ salinities. Significant results were observed in NRRT and burrowing behavioural assays in temperature treatments. Treatments with pH of 7.4 and 7.2 at the acute exposure duration resulted in a significant impairment of righting ability. The acute and chronic effects of salinity fluctuations, ocean warming and acidification on A
2 typicus were most consistently observed in the righting and burrowing behaviour assays. This indication of reduced fitness together with reduced cellular responses show a reduction in survival ability in the sea star under low salinity, high temperature and low pH conditions. Further studies could thus help us understand the effects of global warming on the physiology of organisms in various shallow water habitats.

Continue reading ‘An ecotoxicological study on physiological responses of Archaster typicus to salinity, thermal and ocean acidification stressors’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,348,612 hits


Ocean acidification in the IPCC AR5 WG II

OUP book