Posts Tagged 'vents'



Functional biodiversity loss along natural CO2 gradients

The effects of environmental change on biodiversity are still poorly understood. In particular, the consequences of shifts in species composition for marine ecosystem function are largely unknown. Here we assess the loss of functional diversity, i.e. the range of species biological traits, in benthic marine communities exposed to ocean acidification (OA) by using natural CO2 vent systems. We found that functional richness is greatly reduced with acidification, and that functional loss is more pronounced than the corresponding decrease in taxonomic diversity. In acidified conditions, most organisms accounted for a few functional entities (i.e. unique combination of functional traits), resulting in low functional redundancy. These results suggest that functional richness is not buffered by functional redundancy under OA, even in highly diverse assemblages, such as rocky benthic communities.

Continue reading ‘Functional biodiversity loss along natural CO2 gradients’

Characterization of bacterioplankton communities and quantification of organic carbon pools off the Galapagos Archipelago under contrasting environmental conditions

Bacteria play a crucial role in the marine carbon cycle, contributing to the production and degradation of organic carbon. Here, we investigated organic carbon pools, aggregate formation, and bacterioplankton communities in three contrasting oceanographic settings in the Galapagos Archipelago. We studied a submarine CO2 vent at Roca Redonda (RoR), an upwelling site at Bolivar Channel (BoC) subjected to a weak El Niño event at the time of sampling in October 2014, as well as a site without volcanic or upwelling influence at Cowley Islet (CoI). We recorded physico-chemical parameters, and quantified particulate and dissolved organic carbon, transparent exopolymeric particles, and the potential of the water to form larger marine aggregates. Free-living and particle-attached bacterial communities were assessed via 16S rRNA gene sequencing. Both RoR and BoC exhibited temperatures elevated by 1–1.5 °C compared to CoI. RoR further experienced reduced pH between 6.8 and 7.4. We observed pronounced differences in organic carbon pools at each of the three sites, with highest dissolved organic carbon concentrations at BoC and RoR, and highest particulate organic carbon concentrations and aggregate formation at BoC. Bacterioplankton communities at BoC were dominated by opportunistic copiotrophic taxa, such as Alteromonas and Roseobacter, known to thrive in phytoplankton blooms, as opposed to oligotrophic taxa dominating at CoI, such as members of the SAR11 clade. Therefore, we propose that bacterial communities were mainly influenced by the availability of organic carbon at the investigated sites. Our study provides a comprehensive characterization of organic carbon pools and bacterioplankton communities, highlighting the high heterogeneity of various components of the marine carbon cycle around the Galapagos Archipelago.

Continue reading ‘Characterization of bacterioplankton communities and quantification of organic carbon pools off the Galapagos Archipelago under contrasting environmental conditions’

Suitability of the shallow water hydrothermal system at Ambitle Island (Papua New Guinea) to study the effect of high pCO2 on coral reefs

Highlights

• Volcanic CO2vents and seeps acidify Tutum Bay
• HCorals survive at pH levels lower than climate change projected levels for the end of this century
• Hydrothermal vents in Tutum Bay are enriched in some metals, but concentrations are quickly diluted by mixing with seawater
• Surface water was enriched in arsenic and silica, although reef values were found to be lower

Abstract

Volcanic CO2 seeps were successfully used to predict coral reef response to ocean acidification, although toxic elements, often characteristic of hydrothermal vents were rarely reported. We measured the physicochemical conditions, seawater carbonate chemistry and trace elements in Tutum Bay, Papua New Guinea. There, intense emission of hydrothermal fluids and CO2 expose the coral reef to a seawater pHT between 7.6 and 7.7.
Arsenic and silica were enriched by up to six times in surface seawater, while bottom concentrations were lower and thus similar to coral reefs worldwide. Manganese, cesium, iron and zinc concentrations fell into the range of other coastal environments. Our measurements suggest that Tutum Bay is a suitable site to study the response of coral reefs to high pCO2. Considering that arsenic is a common metal in hydrothermal fluids, its characterization should be included in any study that uses volcanic CO2 seeps as natural laboratories for ocean acidification.

Continue reading ‘Suitability of the shallow water hydrothermal system at Ambitle Island (Papua New Guinea) to study the effect of high pCO2 on coral reefs’

Water circulation, and not ocean acidification, affects coral recruitment and survival at shallow hydrothermal vents

Highlights

• Coral recruitment and survival are not affected by water acidification.
• Recruits’ abundance is enhanced in vent sites compare to control sites.
• Hydrothermal vent cause a closed water circulation.
• Vent activity promote coral recruitment by retaining coral larvae.
• Broadcast-spawning corals, Acropora and most of the Others, seem to be favoured.

Abstract

Shallow hydrothermal vents emit warm water, carbon dioxide, toxic chemicals, nutrients and reduced compounds that altogether mimic climate and human impacts, and are therefore considered as ‘natural laboratories’ at which can be investigated the effects of these stressors on marine ecosystems. One of the effects more thoroughly investigated is the impact of reduced pH on marine biodiversity. Calcifying organisms, such as corals, are expected to be more affected, but their response to reduced pH values in seawater has been tackled mostly by laboratory studies. Here, we assessed coral recruitment and juvenile survival, two fundamental processes for coral reef maintenance and resilience, in shallow reefs of North Sulawesi (Indonesia) close to hydrothermal vents. Differences in abundance of coral recruits (<5 cm in diameter) and juveniles (5–15 cm in diameter) were evaluated at vent sites and at control sites, on both reef flats and upper slopes. Recruits of Acropora and other broadcasting corals resulted more abundant near vents, while no difference in juvenile survival was observed between vent sites and controls. On the contrary, Pocillopora, which includes many brooders, showed a low density of recruits and low survival rates at vent sites. Vents caused a typical closed water circulation that retained coral larvae on site, and this effect, rather than water acidification or the emission of chemical compounds, was likely to be responsible for increased recruitment of broadcasters.

Continue reading ‘Water circulation, and not ocean acidification, affects coral recruitment and survival at shallow hydrothermal vents’

Impact of carbonate saturation on large Caribbean benthic foraminifera assemblages

Increasing atmospheric carbon dioxide and its dissolution in seawater have reduced ocean pH and carbonate ion concentrations, with potential implications on calcifying organisms. To assess the response of large Caribbean benthic foraminifera to low carbonate saturation conditions, we analyzed benthic foraminifers’ abundance and relative distribution in surface sediments in proximity to low-carbonate-saturation submarine springs and at adjacent control sites. Our results show that the total abundance of large benthic foraminifera was significantly lower at the low-pH submarine springs than at control sites, although responses were species specific. The relative abundance of high-magnesium, porcelaneous foraminifera was higher than that of hyaline foraminifera at the low-pH springs due to the abundant Archaias angulatus, a chlorophyte-bearing foraminifer, which secretes a large and robust test that is more resilient to dissolution at low-calcite saturation. The different assemblages found at the submarine springs indicate that calcareous symbiont-barren foraminifera are more sensitive to the effects of ocean acidification than agglutinated and symbiont-bearing foraminifera, suggesting that future ocean acidification will likely impact natural benthic foraminifera populations.

Continue reading ‘Impact of carbonate saturation on large Caribbean benthic foraminifera assemblages’

Condition of pteropod shells near a volcanic CO2 vent region

Highlights

 • in situ shell dissolution and change in shell biomass were the predominant features observed in the live pteropods collected within and nearby CO2 vent regions.

• Low pteropod biomass shells (collected nearby the CO2 vents) were more fragile and therefore more prone to fracture than the more robust, high biomass shells (collected in the control stations).

• In the Gulf of Naples, intermittent shifts away from optimum Ωar values can significantly affect pteropod calcification despite waters remaining oversaturated.

Abstract

Natural gradients of pH in the ocean are useful analogues for studying the projected impacts of Ocean Acidification (OA) on marine ecosystems. Here we document the in situ impact of submarine CO2 volcanic emissions (CO2 vents) on live shelled-pteropods (planktonic gastropods) species Creseis conica in the Gulf of Naples (Tyrrhenian Sea, Mediterranean). Since the currents inside the Gulf will likely drive those pelagic calcifying organisms into and out of the CO2 vent zones, we assume that pteropods will be occasionally exposed to the vents during their life cycle. Shell degradation and biomass were investigated in the stations located within and nearby the CO2 vent emission in relation to the variability of sea water carbonate chemistry. A relative decrease in shell biomass (22%), increase in incidence of shell fractures (38%) and extent of dissolution were observed in Creseis conica collected in the Gulf of Naples compared to those from the Northern Tyrrhenian Sea (control stations). These results suggest that discontinuous but recurrent exposure to highly variable carbonate chemistry could consistently affect the characteristic of the pteropod shells.

Continue reading ‘Condition of pteropod shells near a volcanic CO2 vent region’

Elevated CO2 has little influence on the bacterial communities associated with the pH-tolerant coral, massive Porites spp.

Ocean acidification (OA) as a result of increased anthropogenic CO2 input into the atmosphere carries consequences for all ocean life. Low pH can cause a shift in coral-associated microbial communities of pCO2-sensitive corals, however, it remains unknown whether the microbial community is also influenced in corals known to be more tolerant to high pCO2/low pH. This study profiles the bacterial communities associated with the tissues of the pCO2-tolerant coral, massive Porites spp., from two natural CO2 seep sites in Papua New Guinea. Amplicon sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene revealed that microbial communities remained stable across CO2 seep sites (pH = 7.44–7.85) and adjacent control sites (ambient pH = 8.0–8.1). Microbial communities were more significantly influenced by reef location than pH, with the relative abundance of dominant microbial taxa differing between reefs. These results directly contrast with previous findings that increased CO2 has a strong effect on structuring microbial communities. The stable structure of microbial communities associated with the tissues of massive Porites spp. under high pCO2/low pH conditions confirms a high degree of tolerance by the whole Porites holobiont to OA, and suggest that pH tolerant corals such as Porites may dominate reef assemblages in an increasingly acidic ocean.

Continue reading ‘Elevated CO2 has little influence on the bacterial communities associated with the pH-tolerant coral, massive Porites spp.’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,141,736 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book