Posts Tagged 'methods'



Mussel shells of Mytilus edulis as bioarchives of the distribution of rare earth elements and yttrium in seawater and the potential impact of pH and temperature on their partitioning behavior (update)

Mussel shells are potential bioarchives of proxies for changes in the physicochemical conditions in the bivalve’s habitat. One such proxy is the distribution of rare earths and yttrium (REY) in seawater, as REY speciation in seawater is sensitive to pH and temperature variations, due to the impact of these parameters on the activity of CO32− in seawater. We present a new protocol for sample preparation and determination of ultratrace concentrations of REY in bulk bivalve shells (comprised of calcite and aragonite) that includes sample treatment with NaOCl followed by REY separation and preconcentration. The data obtained were used to calculate REY partition coefficients between bulk bimineralic shells of Mytilus edulis (calcite aragonite mix) and ambient seawater, and the results acquired were then used to investigate the potential effects of pH and temperature on REY partitioning.

Shells of Mytilus edulis mussels from the North Sea show consistent shale-normalized (SN) REY patterns that increase from the light REY to the middle REY and decrease from the middle REY to the heavy REY. Despite being different from the general seawater REYSN pattern, the shells still display distinct REY features of seawater, such as a negative CeSN anomaly and small positive YSN and GdSN anomalies. Apparent REY partition coefficients between shells and seawater (appDTot.REYshell/seawater) are low and decrease strongly from the light REY (4.04 for La) to the heavy REY (0.34 for Lu). However, assuming that only the free REY3+ are incorporated into the shell, modDFreeREY3+shell/seawater values are higher and comparatively similar for all REY (102.46 for La; 113.44 for Lu) but show a slight maximum at Tb (199.18). Although the impact of vital effects, such as REY speciation in a mussel’s extrapallial fluid from which the carbonate minerals precipitate, cannot be quantified yet, it appears that M. edulis shells are bioarchives of some REY features of seawater.

We modeled the REYSN patterns of a hypothetical mussel shell at pH 8.2 and 7.6 and at temperatures of 25 and 5 °C, assuming that only free REY3+ are incorporated into the carbonate’s crystal lattice and that vital effects do not obliterate the REY signal of the shells. The results suggest that with lower pH, REY concentrations in shells increase, but with little effect on the shape of the REYSN patterns, while a temperature change has an impact on the REYSN pattern but only minor effects on REY concentrations. Hence, after additional calibration studies, the REY systematics in mussel shells may become a valuable proxy for paleo-pH and ocean acidification.

Continue reading ‘Mussel shells of Mytilus edulis as bioarchives of the distribution of rare earth elements and yttrium in seawater and the potential impact of pH and temperature on their partitioning behavior (update)’

Porewater acidification alters the burrowing behavior and post-settlement dispersal of juvenile soft-shell clams (Mya arenaria)

Although ocean acidification will impact marine organisms in the future, few studies have addressed the effects of sedimentary porewater acidification on benthic invertebrates. This study suggests that burrowing behavior and post-settlement dispersal of juvenile bivalves are altered by porewater acidification under present day conditions. We tested the efficacy of a novel method of stabilizing porewater pH using sediment underlain with food grade gelatin in both the lab and field, and then employed this method to test if porewater acidification could alter post-settlement clam dispersal under natural conditions. In the field, clams were exposed to a gradient of porewater acidification in manipulated (CO2 added) sediments for 24 h to determine if acidification could alter dispersal patterns of juvenile clams under natural flow conditions; juvenile clam dispersal in the presence of different buffer types was also tested. In addition, juvenile clams were placed on unmanipulated, field-collected sediment cores in the lab which varied naturally with respect to acidification to test burrowing behavior in response to natural porewater pH. Gelatin stabilized porewater pH for 24–48 h and its presence did not influence clam burrowing behavior. In the field, a significant negative relationship between the percent of clams dispersed and acidification was observed, while stabilizing porewater pH significantly decreased clam dispersal. In the lab, there was a significant positive relationship between the percent of clams burrowed and porewater acidification. This study suggests that porewater acidification has the capacity to alter the burrowing behavior and dispersal patterns of juvenile bivalves under natural conditions.

Continue reading ‘Porewater acidification alters the burrowing behavior and post-settlement dispersal of juvenile soft-shell clams (Mya arenaria)’

Observing climate change trends in ocean biogeochemistry: when and where

Understanding the influence of anthropogenic forcing on the marine biosphere is a high priority. Climate change-driven trends need to be accurately assessed and detected in a timely manner. As part of the effort towards detection of long-term trends, a network of ocean observatories and time series stations provide high quality data for a number of key parameters, such as pH, oxygen concentration or primary production (PP). Here, we use an ensemble of global coupled climate models to assess the temporal and spatial scales over which observations of eight biogeochemically relevant variables must be made to robustly detect a long-term trend. We find that, as a global average, continuous time series are required for between 14 (pH) and 32 (PP) years to distinguish a climate change trend from natural variability. Regional differences are extensive, with low latitudes and the Arctic generally needing shorter time series (<~30 years) to detect trends than other areas. In addition, we quantify the ‘footprint’ of existing and planned time series stations, that is the area over which a station is representative of a broader region. Footprints are generally largest for pH and sea surface temperature, but nevertheless the existing network of observatories only represents 9–15% of the global ocean surface. Our results present a quantitative framework for assessing the adequacy of current and future ocean observing networks for detection and monitoring of climate change-driven responses in the marine ecosystem.

Continue reading ‘Observing climate change trends in ocean biogeochemistry: when and where’

Tidal benthic mesocosms simulating future climate change scenarios in the field of marine ecology

Increasing human activities cause local to global changes in sea surface temperatures, ocean acidity, eutrophication, and rising sea levels. Many laboratory experiments investigate the effects of these regime shifts on single species and single stressors, showing variable responses within and among species, while different combinations of stressors can have synergistic, additive or antagonistic effects. Large-scale multi-species and multi-stressor experiments can more reliably predict future ecosystem changes. A unique mesocosm facility was developed and set up at the AWI Wadden Sea Station – Sylt, Northern Germany to investigate the particular effects of future climate changes on predominant marine intertidal communities. Each of 12 benthic mesocosms serves as an independent experimental unit with novel techniques of tide and current simulations as well as multi parameter measurement systems to simulate multi-factorial climate change scenarios including the combination of warming, acidification, nutrient enrichment, and sea level rise. Temperature, pH, oxygen, and salinity can be continuously monitored and logged, while discretely collected samples of total alkalinity, light availability, chlorophyll a (Chl a), nutrients and seston supplement these online datasets. Herein we demonstrate the functionality of the new benthic mesocosm system including first experimental results on the responses of Fucus vesiculosus forma mytili, and its associated community to the combination of warming, ocean acidification, and increased nutrient enrichment. Continue reading ‘Tidal benthic mesocosms simulating future climate change scenarios in the field of marine ecology’

A mesocosm concept for the simulation of near-natural shallow underwater climates: The Kiel Outdoor Benthocosms (KOB)

Biogenic, seasonal, and stochastic fluctuations at various scales characterize coastal marine habitats and modulate environmental stress. The relevance of most past studies into climate change impacts is weakened by the usually intentional exclusion of fluctuations from the experimental design. We describe a new outdoor mesocosm system for benthic research (“benthocosms”) which permit the control and manipulation of several environmental variables while admitting all natural in situ fluctuations. This is achieved by continuously measuring the relevant variables (e.g., temperature, pH, O2, CO2) in situ, defining these in real time as reference values in the control software and simulating target climates by delta treatments. The latter constitute the manipulative addition of predefined changes (e.g., “warming”, “acidification”) to the reference values. We illustrate the performance of the system by presenting the environmental data of four seasonal experiments which together represent an entire year. The “Kiel Outdoor Benthocosms” allow realizing near-natural climate change experiments on complex benthic communities under controlled scenarios.

Continue reading ‘A mesocosm concept for the simulation of near-natural shallow underwater climates: The Kiel Outdoor Benthocosms (KOB)’

Intra-skeletal calcite in a live-collected Porites sp.: Impact on environmental proxies and potential formation process

Geochemical proxies measured in the carbonate skeleton of tropical coral Porites sp. have commonly been used to reconstruct sea surface temperature (SST) and more recently seawater pH. Nevertheless, both reconstructed SST and pH depend on the preservation state of the skeleton, here made of aragonite; i.e., diagenetic processes and its related effects should be limited. In this study, we report on the impact of the presence of intra-skeletal calcite on the skeleton geochemistry of a live-collected Porites sp.. The Porites skeleton preservation state was analyzed using X-ray diffraction and scanning electron microscopy. Sr/Ca, Mg/Ca, U/Ca, Ba/Ca, Li/Mg, and B/Ca ratios were measured at a monthly and yearly resolution using solution ICP-MS and multi-collector ICP-MS. The δ11B signatures and the calcite percentages were acquired at a yearly timescale. The coral colony presents two parts, one with less than 3% calcite (referred to as “no-calcite” skeleton), the other one, corresponding to the skeleton formed during the last 4 yrs. of growth, with calcite percentages varying from 13 to 32% (referred to as “with calcite” skeleton). This intra-skeletal calcite replaces partly or completely numerous center of calcification (COCs). All geochemical tracers investigated are significantly impacted by the presence of calcite. The reconstructed SST decreases by about 0.1°C per calcite-percent as inferred from the Sr/Ca ratio. Such impact reaches up to 0.26°C per calcite-percent for temperature deduced from the Li/Mg ratio. So, less than 5% of such intra-skeletal calcite does not prevent SST reconstructions using Sr/Ca ratio, but the percentage and type of calcite have to be determined before fine SST interpretation. Seawater pH reconstruction inferred from boron isotopes drop by about -0.011 pH-unit per calcite-percent. Such sensitivity to calcite presence is particularly dramatic for fine paleo-pH reconstructions. Here we suggest that after being brought to shallow waters following a cyclone, the studied coral was seasonally subjected to rainfall-related water freshening that could have mimicked a vadose environment like can be encountered on raised fossil coral reefs. Nevertheless, the process of calcite precipitation remains to be determined.

Continue reading ‘Intra-skeletal calcite in a live-collected Porites sp.: Impact on environmental proxies and potential formation process’

Dissolved inorganic carbon speciation in aquatic environments and its application to monitor algal carbon uptake

Dissolved inorganic carbon (DIC) speciation is an important parameter that enables chemical and ecological changes in aquatic environments, such as the aquatic environmental impact of increasing atmospheric CO2 levels, to be monitored. We have examined and developed a sensitive and cost-effective ‘back-titration’ method to determine the DIC species and abundance in aqueous environments that is more accurate and reproducible than existing methods and is applicable in a range of fresh, brackish and sea waters. We propose the use of pHHCO3 (bicarbonate-dominant pH) and pH 3.5 as the titration end points in the back-titration technique to accurately determine carbonate alkalinity. The proposed method has a higher accuracy and precision than other modified Gran’s methods that are currently in use. The detection limit was found to be ~ 5 μmol kg− 1 with an accuracy within 1% and a precision (CV) within 0.2% and 0.5% at high and low level of carbonates, respectively. This method was successfully applied to monitor DIC in the aqueous medium of Nannochlopsis salina cultivation separately carried out with NaHCO3 and CO2 as the respective inorganic carbon source. The cells were able to grow in the NaHCO3 medium with a similar growth curve to cells with 0.039% CO2 (air). Increases in CO2 level stimulated lipid accumulation by diverting the fixed carbon from protein to lipids. The increased concentration of gaseous CO2 and the accompanying lower pH appears to significantly inhibit the growth of algae despite the presence of HCO3− when 20% CO2 was employed.

Continue reading ‘Dissolved inorganic carbon speciation in aquatic environments and its application to monitor algal carbon uptake’

Wind-powered vessel for removal of carbon dioxide from seawater (United States Patent)

Inventors: DeVaul R. W. (Mountain View, CA) & Vander Lind D. (Alameda, CA)

Disclosed embodiments relate to an ocean-going vessel that includes an airborne wind turbine to generate power. The generated power can be used for an electrodialysis system that extracts carbon dioxide (CO2) from seawater and/or for an electrolysis system that produces hydrogen (H2), both of which are disposed on the ocean-going vessel. The ocean-going vessel further includes a refinery system that may use a mixture of the H2 and CO2 gases that are to produce a fuel or chemical. In an example embodiment, the mixture of the H2 and CO2 gases may be processed to produce a synthetic fuel, which in turn may be processed to produce ethanol.

Further information.

Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and application to a modern Porites coral

Laser Ablation coupled to Multi-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICPMS) is a powerful tool for the high-precision measurement of the isotopic ratios of many elements in geological samples, with the isotope ratio (11B/10B) of boron being used as an indicator of the pH of oceanic waters. Most geological samples or standards are polished and ablation occurs on flat surfaces. However, the shape and the irregularities of marine biocarbonates (e.g., corals, foraminifera) can make precise isotopic measurements of boron difficult. Even after polishing, the porosity properties and the presence of holes or micro-fractures affect the signal and the isotopic ratio when ablating the material, especially in raster mode.

Continue reading ‘Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and application to a modern Porites coral’

An ocean sensor for measuring the seawater electrochemical response of 8 metals referenced to zinc, for determining ocean pH

We describe the use of a multi-metal electrochemical cell for measuring ocean pH. The sensor was designed to be robust, inexpensive, and capable of 0.02 sensitivity to pH in the narrow
ranges required for marine pH monitoring. A prototype sensor has undergone an extended ocean deployment with promising results.

Continue reading ‘An ocean sensor for measuring the seawater electrochemical response of 8 metals referenced to zinc, for determining ocean pH’

Enhanced weathering strategies for stabilizing climate and averting ocean acidification

Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30–300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m−2 yr−1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

Continue reading ‘Enhanced weathering strategies for stabilizing climate and averting ocean acidification’

Metrological challenges for measurements of key climatological observables: oceanic salinity and pH, and atmospheric humidity. Part 1: overview

Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air–sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together with three companion articles, we examine the climatologically relevant quantities ocean salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the definitions of those key observables, and their lack of secure foundation on the International System of Units, the SI. The metrological histories of those three quantities are reviewed, problems with their current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organizations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems in climatology.

Continue reading ‘Metrological challenges for measurements of key climatological observables: oceanic salinity and pH, and atmospheric humidity. Part 1: overview’

Deep-sea coral δ13C: A tool to reconstruct the difference between seawater pH and δ11B-derived calcifying fluid pH

The boron isotopic composition (δ11B) of coral skeleton is a proxy for seawater pH. However, δ11B-based pH estimates must account for the pH difference between seawater and the coral calcifying fluid, ∆pH. We report that skeletal δ11B and ∆pH are related to the skeletal carbon isotopic composition (δ13C) in four genera of deep-sea corals collected across a natural pH range of 7.89–8.09, with ∆pH related to δ13C by ∆pH=0.029×δ13C+0.929, r2=0.717. Seawater pH can be reconstructed by determining ∆pH from δ13C and subtracting it from the δ11B-derived calcifying fluid pH. The uncertainty for reconstructions is ±0.12 pH units (2 standard deviations) if estimated from regression prediction intervals, or between ±0.04 and ±0.06 pH units if estimated from confidence intervals. Our new approach quantifies and corrects for vital effects, offering improved accuracy relative to an existing δ11B versus seawater pH calibration with deep-sea scleractinian corals.

Continue reading ‘Deep-sea coral δ13C: A tool to reconstruct the difference between seawater pH and δ11B-derived calcifying fluid pH’

Characterisation of pH and pCO2 optodes towards high resolution in situ ocean deployment

Anthropogenic emissions of carbon dioxide (CO2) into the atmosphere results in climate change and perturbations of the oceanic carbonate system. Atmospheric CO2 concentrations have increased from pre-industrial times from land use changes, fossil fuel combustion and increasing cement production. The ocean is currently a major sink for this anthropogenic CO2, increasing pCO2 and dissolved inorganic carbon concentrations and decreasing pH and carbonate ion concentrations. This has potential biogeochemical and ecosystem consequences. To monitor the ocean’s uptake of CO2, identify regions of enhanced carbonate system changes, and observe the effectiveness of CO2 emission mitigation strategies, high quality pCO2 and pH measurements with good temporal and spatial coverage are required. This thesis presents the characterisation of novel pH and pCO2 sensing spots which use fluorescent detection techniques, and evaluates their potential for in situ seawater deployments.

The optode sensing spots were illuminated with low intensity light (0.2 mA, 0.72 mWatt), and the time-domain dual lifetime referencing analysis technique was applied to maximise the lifetime of the spot and reduce overall power consumption of the measurement (1.8 Watt). The same hardware was used for both the pH and pCO2 spot interrogation, thereby demonstrating the versatility of the optode. After initial calibrations over typical seawater ranges for pH and pCO2, (pH range 7.6 – 8.2 and pCO2 range 280-1000 μatm) the temperature and salinity dependence of the spots was evaluated. The pH displayed both a temperature (- 0.046 pH / °C from 5-25 °C) and salinity dependency (-0.01 pH /psu over 5-35), while the pCO2 sensor showed only a temperature dependence (-39 μatm °C-1). Precision of the repeated measurement of certified reference material was 0.0074 pH and 0.8 μatm for the pH and pCO2 optodes, respectively. The optodes were deployed as shipboard autonomous underway systems in the North Atlantic and Southern Ocean, both important CO2 sink regions. The successful pCO2 data deployment produced good quality data that has been used to quantify the spatial controls on carbonate chemistry and air-sea CO2 fluxes in the North Atlantic, and evaluate the effect of sampling rate and interpolation method on the determined flux. This thesis demonstrates the potential of these small sensors, with the ultimate aim to deploy them on ARGO floats and gliders.

Continue reading ‘Characterisation of pH and pCO2 optodes towards high resolution in situ ocean deployment’

Metrological challenges for measurements of key climatological observables. Part 3: seawater pH

Water dissolves many substances with which it comes into contact, leading to a variety of aqueous solutions ranging from simple and dilute to complex and highly concentrated. Of the multiple chemical species present in these solutions, the hydrogen ion, H+, stands out in importance due to its relevance to a variety of chemical reactions and equilibria that take place in aquatic systems. This importance, and the fact that its presence can be assessed by reliable and inexpensive procedures, are the reasons why pH is perhaps the most measured chemical parameter. In this paper, while examining climatologically relevant ocean pH, we note fundamental problems in the definition of this key observable, and its lack of secure foundation on the International System of Units, the SI. The metrological history of seawater pH is reviewed, difficulties arising from its current definition and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent TEOS-10 seawater standard. It is concluded that the International Bureau of Weights and Measures (BIPM), in cooperation with the International Association for the Properties of Water and Steam (IAPWS), along with other international organisations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems.

Continue reading ‘Metrological challenges for measurements of key climatological observables. Part 3: seawater pH’

Understanding audiences: Making public perceptions research matter to marine conservation

There is increasing awareness of the need to meaningfully engage society in efforts to tackle marine conservation challenges. Public perceptions research (PPR) in a marine conservation context provides tools to see the sea through the multiple lenses with which society interprets both the marine environment and marine conservation efforts. Traditionally, PPR is predominantly a social science which has considerable interdisciplinarity, owing to the variety of disciplines which contribute to its delivery and benefit from its outputs. Similarly, the subjects of a marine application of PPR are diverse, and relate to public perceptions of any marine component or activity. Evidence shows this is a growing area of science, and the paper presents a qualitative approach to addressing key questions to inform the continuing development of this field through a workshop held at the Third International Marine Conservation Congress 2014. Key findings are discussed under the themes of 1) the benefits of PPR to marine conservation; 2) priorities for PPR to support marine conservation; 3) making PPR accessible to marine practitioners and policy makers; and 4) interdisciplinary research collaboration to deliver PPR. The workshop supported the development of a framework which illustrates: the key conditions which can support PPR to take place; the types of research which PPR can be used to address; the applications of PPR findings for marine conservation; and the types of marine conservation benefits which can be delivered. As PPR gains an increasing presence in marine conservation, it is hoped that this discussion and framework will support researchers and practitioners to identify opportunities for PPR to deliver benefits, and to work together to achieve these.

Continue reading ‘Understanding audiences: Making public perceptions research matter to marine conservation’

An automated monitoring and control system for flow-through co-cycling hypoxia and pH experiments

Acidification research has exploded in recent years, however, experiments testing effects of co-cycling hypoxia and pH on ecological and physiological processes are rare, despite the pervasiveness and potential importance of co-varying fluctuations in these parameters. Co-cycling dissolved oxygen (DO) and pH are difficult to precisely control, as gases used for manipulation influence both parameters. We successfully developed a LabVIEW™-based system capable of monitoring and controlling co-varying DO and pH in raw seawater flow-through aquaria. Using feedback from Oxyguard DO probes and Honeywell ion sensitive field effect transistor Durafet pH sensors, our system controls ratios of nitrogen, oxygen, carbon dioxide, atmospheric air, and CO2-stripped air within a total gas flow rate through mass flow controllers, to achieve target co-cycling DO and pH values in five treatments. Our system performed well in two long-term experiments investigating effects of diel-cycling hypoxia and pH on eastern oyster (Crassostrea virginica) feeding, growth, fecundity, Perkinsus sp. (Dermo) infection dynamics and immune response. In our 2013 adult oyster experiment, the severe low DO treatment averaged only 0.04 mg L−1 higher than the 0.50 mg L−1 target, and the moderate hypoxia averaged only 0.05 mg L−1 higher than the 1.30 mg L−1 target over 48 d of cycles. Mean pH for the hypercapnia plateau was within 0.02 above the 7.00 target. In our 2013 spat experiment, daily minimum DO in the severe and moderate hypoxia treatments were both within 0.06 mg L−1 of the 0.50 and 1.3 mg L−1 targets, respectively; hypercapnia plateau pH values were within 0.01 of our 7.00 target.

Continue reading ‘An automated monitoring and control system for flow-through co-cycling hypoxia and pH experiments’

Temperature control and carbonate system manipulation in a land-based mesocosm experiment

Warming and acidification of the oceans are two major drivers of climate change. Mesocosm facilities are a powerful tool for studying the impact of warming and acidification on planktonic ecosystems. This study presents one of the few existing systems for controlling temperature in outdoor mesocosm enclosures. Two temperature targets (25, 28°C) were maintained with very weak variability during the 14 days duration of the experiment. Targeted conditions in the acidified treatments were achieved after additions of CO2-saturated and were then let to evolve till the end of the experiment. The temporal evolution of pH and pCO2 showed relatively small fluctuations, while AT values gradually increased during the experimental period following more or less the salinity variations.

Continue reading ‘Temperature control and carbonate system manipulation in a land-based mesocosm experiment’

Crystallographic control on the boron isotope paleo-pH proxy

When using the boron isotopic composition (δ11B) of marine carbonates as a seawater pH proxy, it is assumed that only the tetrahedral borate ion is incorporated into the growing carbonate crystals and that no boron isotope fractionation occurs during uptake. However, the δ11B of the calcium carbonate from most modern foraminifera shells or corals skeletons is not the same as the δ11B of seawater borate, which depends on pH, an observation commonly attributed to vital effects. In this study, we combined previously published high-field 11B MAS NMR and new δ11B measurements on the same synthetic calcite and aragonite samples precipitated inorganically under controlled environments to avoid vital effects. Our results indicate that the main controlling factors of δ11B are the solution pH and the mineralogy of the precipitated carbonate mineral, whereas the aqueous boron concentration of the solution, CaCO3 precipitation rate and the presence or absence of growth seeds all appear to have negligible influence. In aragonite, the NMR data show that boron coordination is tetrahedral (BO4), in addition, its δ11B is equal to that of aqueous borate, thus confirming the paleo-pH hypothesis. In contrast, both trigonal BO3 and tetrahedral BO4 are present in calcite, and its δ11B values are higher than that of aqueous borate and are less sensitive to solution pH variations compared to δ11B in aragonite. These observations are interpreted in calcite as a reflection of the incorporation of decreasing amounts of boric acid with increasing pH. Moreover, the fraction of BO3 measured by NMR in calcite is higher than that inferred from δ11B which indicates a coordination change from BO4 to BO3 upon boron incorporation in the solid. Overall, this study shows that although the observed differences in δ11B between inorganic and biological aragonite are compatible with a pH increase at calcification sites, the B speciation and isotope composition of biological calcites call for a more complex mechanism of boron incorporation.

Continue reading ‘Crystallographic control on the boron isotope paleo-pH proxy’

Data compilation on the biological response to ocean acidification: an update

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.

Continue reading ‘Data compilation on the biological response to ocean acidification: an update’


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources