Posts Tagged 'socio-economy'



Dealing with the effects of ocean acidification on coral reefs in the Indian Ocean and Asia

Shallow coral reefs provide food, income, well-being and coastal protection to countries around the Indian Ocean and Asia. These reefs are under threat due to many anthropogenic stressors including pollution, sedimentation, overfishing, sea surface warming and habitat destruction. Ocean acidification interacts with these factors to exacerbate stress on coral reefs. Effective solutions in tackling the impact of ocean acidification require a thorough understanding of the current adaptive capacity of each nation to deal with the consequences. Here, we aim to help the decision-making process for policy makers in dealing with these future challenges at the regional and national levels. We recommend that a series of evaluations be made to understand the current status of each nation in this region in dealing with ocean acidification impacts by assessing the climate policy, education, policy coherence, related research activities, adaptive capacity of reef-dependent economic sectors and local management. Indonesia and Thailand, are selected as case studies. We also highlight general recommendations on mitigation and adaptation to ocean acidification impacts on coral reefs and propose well-designed research program would be necessary for developing a more targeted policy agenda in this region.

Continue reading ‘Dealing with the effects of ocean acidification on coral reefs in the Indian Ocean and Asia’

Ecological-economic sustainability of the Baltic cod fisheries under ocean warming and acidification

Highlights
• Ocean warming and acidification (OAW) will drastically decrease cod fishing opportunities in the Baltic.

• Ecological-economic modeling shows high losses in catch, and profits due to OAW.

• There is a high risk of cod stock collapse under mid-term climate change.

• Improved management could temporarily counteract OAW stressors.

• Adaptation includes a reduction in fishing mortality, and increased mesh size.

Abstract
Human-induced climate change such as ocean warming and acidification, threatens marine ecosystems and associated fisheries. In the Western Baltic cod stock socio-ecological links are particularly important, with many relying on cod for their livelihoods. A series of recent experiments revealed that cod populations are negatively affected by climate change, but an ecological-economic assessment of the combined effects, and advice on optimal adaptive management are still missing. For Western Baltic cod, the increase in larval mortality due to ocean acidification has experimentally been quantified. Time-series analysis allows calculating the temperature effect on recruitment. Here, we include both processes in a stock-recruitment relationship, which is part of an ecological-economic optimization model. The goal was to quantify the effects of climate change on the triple bottom line (ecological, economic, social) of the Western Baltic cod fishery. Ocean warming has an overall negative effect on cod recruitment in the Baltic. Optimal management would react by lowering fishing mortality with increasing temperature, to create a buffer against climate change impacts. The negative effects cannot be fully compensated, but even at 3 °C warming above the 2014 level, a reduced but viable fishery would be possible. However, when accounting for combined effects of ocean warming and acidification, even optimal fisheries management cannot adapt to changes beyond a warming of +1.5° above the current level. Our results highlight the need for multi-factorial climate change research, in order to provide the best available, most realistic, and precautionary advice for conservation of exploited species as well as their connected socio-economic systems.

Continue reading ‘Ecological-economic sustainability of the Baltic cod fisheries under ocean warming and acidification’

Coral reefs of the Red Sea — challenges and potential solutions

The Red Sea is a unique body of water, hosting some of the most productive and diverse coral reefs. Human populations along coasts of the Red Sea were initially sparse due to the hot and arid climate surrounding it, but this is changing with improved desalination techniques, accessible energy, and increased economic interest in coastal areas. In addition to increasing pressure on reefs from coastal development, global drivers, primarily ocean acidification and seawater warming, are threatening coral reefs of the region. While reefs in southern sections of the Red Sea live near or above their maximum temperature tolerance and have experienced bleaching events in the recent past, coral reefs in northern sections are considered a coral reef refugia from global warming and acidification, at least for the coming decades. Such differential sensitivities along the latitudinal gradient of the Red Sea require differential solutions and management. In an effort to identify the appropriate solutions to conserve and maintain resilience of these reefs along a latitudinal gradient, we used a SWOT analysis (strengths/weaknesses/opportunities/threats) to frame the present situation and to propose policy solutions as useful planning procedures. We highlight the need for immediate action to secure the northern sections of the Red Sea as a coral reef climate change refuge by management and removal of local stressors. There is a need to strengthen the scientific knowledge base for proper management and to encourage regional collaboration on environmental issues. Based on scientific data, solutions such as marine protected areas, fishing regulation, and reef restoration approaches were ranked for five distinct latitudinal sections in the Red Sea and levels of interventions are recommended.

Continue reading ‘Coral reefs of the Red Sea — challenges and potential solutions’

Ocean acidification, consumers’ preferences, and market adaptation strategies in the mussel aquaculture industry

Highlights

  • We analyze welfare impacts of ocean acidification in commercial mussels’ species.
  • We assess the effectiveness of market adaptation strategies identified by the industry.
  • OA will impact mussels’ characteristics that are highly valued by the consumers.
  • Unlike cost-benefit analysis, our approach looks for possible market segmentation.

Abstract
Ocean acidification (OA) is one of the largest emerging and significant environmental threats for the aquaculture industry, jeopardizing its role as an alternative for supporting food security. Moreover, market conditions, characterized by price volatility and low value-added products, could exacerbate the industry’s vulnerability to OA. We use a literature review on the biological consequences of OA over marine commercial species attributes to inform the empirical assessment of consumers’ preferences for those attributes affected by OA, and consumers’ responses to a set of market adaptation strategies suggested by the industry. We found that OA will have a negative impact on consumers’ welfare due to the effects on commercial attributes of mussels aquaculture products. However, the main concerns for the industry are the market conditions. Thus, the industry’s current adaptation strategies are focused on increasing their market share by offering new product assortments (with more value-added), regardless of the effect of OA on consumers’ welfare. Despite this fact, the industry’s strategies could eventually contribute to cope with OA since some specific segments of the market are willing to pay for new product assortments. This new market composition highlights the role of public institutions’ reputation in issues related to food safety.

Continue reading ‘Ocean acidification, consumers’ preferences, and market adaptation strategies in the mussel aquaculture industry’

Climate change: impact on marine ecosystems and world fisheries

I provide a selected survey of the literature on the effects of climate change on the biophysics and ecology of marine ecosystems and the fisheries that depend on them. First, I discuss the effects of warming, ocean acidification and deoxygenation on marine life. Second, I describe how the projected changes in the biophysics of the ocean is likely to affect the economics and management of ocean fisheries.

Continue reading ‘Climate change: impact on marine ecosystems and world fisheries’

Societal causes of, and responses to, ocean acidification

Major climate and ecological changes affect the world’s oceans leading to a number of responses including increasing water temperatures, changing weather patterns, shrinking ice-sheets, temperature-driven shifts in marine species ranges, biodiversity loss and bleaching of coral reefs. In addition, ocean pH is falling, a process known as ocean acidification (OA). The root cause of OA lies in human policies and behaviours driving society’s dependence on fossil fuels, resulting in elevated CO2 concentrations in the atmosphere. In this review, we detail the state of knowledge of the causes of, and potential responses to, OA with particular focus on Swedish coastal seas. We also discuss present knowledge gaps and implementation needs.

Continue reading ‘Societal causes of, and responses to, ocean acidification’

Bioeconomic analysis of the impact of ocean acidification associated with low recruitment of Isostichopus badionotus and implications for adaptive fishery management in the north of the Yucatan Peninsula, Mexico

The impact that ocean acidification (OA) could generate in the fisheries of Isostichopus badionotus at the north of the Yucatan Peninsulta, Mexico, was analysed by reducing the value of a parameter of the Beverton-Holt recruitment function, in accordance with the acidification scenarios of the Intergovermental Panel Panel on Climate Change (IPCC). The behaviour of the stock and the resulting fishery were analysed in a bioeconomic model structured by age, taking into account different market prices and fishing efforts. The results were compared in decision matrices that used the MiniMax and MaxMin criteria to determine the management strategy that best reduced the impact of  acidification. The largest stock reduction occurred during the first years of exploitation (B10>B15/BO) and all the variables that were considered did stabilize with time, reaching bioeconomic equilibrium. The worst scenario for not considering acidification occurred with low market prices, while the increase in price decreased the exploitation rate. The recruitment reduction determined the maximum effort that should have been applied; under such conditions it is recommended to operate an effort of 137 boats, considering the best market price.

Continue reading ‘Bioeconomic analysis of the impact of ocean acidification associated with low recruitment of Isostichopus badionotus and implications for adaptive fishery management in the north of the Yucatan Peninsula, Mexico’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,278,885 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book