Model simulation of seasonal growth of Fucus vesiculosus in its benthic community

Numerical models are a suitable tool to quantify impacts of predicted climate change on complex ecosystems but are rarely used to study effects on benthic macroalgal communities. Fucus vesiculosus L. is a habitat‐forming macroalga in the Baltic Sea and alarming shifts from the perennial Fucus community to annual filamentous algae are reported. We developed a box model able to simulate the seasonal growth of the Baltic Fucus–grazer–epiphyte system. This required the implementation of two state variables for Fucus biomass in units of carbon (C) and nitrogen (N). Model equations describe relevant physiological and ecological processes, such as storage of C and N assimilates by Fucus, shading effects of epiphytes or grazing by herbivores on both Fucus and epiphytes, but with species‐specific rates and preferences. Parametrizations of the model equations and required initial conditions were based on measured parameters and process rates in the near‐natural Kiel Outdoor Benthocosm (KOB) experiments during the Biological Impacts of Ocean Acidification project. To validate the model, we compared simulation results with observations in the KOB experiment that lasted from April 2013 until March 2014 under ambient and climate‐change scenarios, that is, increased atmospheric temperature and partial pressure of carbon dioxide. The model reproduced the magnitude and seasonal cycles of Fucus growth and other processes in the KOBs over 1 yr under different scenarios. Now having established the Fucus model, it will be possible to better highlight the actual threat of climate change to the Fucus community in the shallow nearshore waters of the Baltic Sea.

Graiff A., Karsten U., Radtke H., Wahl M. & Eggert A., in press. Model simulation of seasonal growth of Fucus vesiculosus in its benthic community. Limnology and Oceanography: Methods. Article.

0 Responses to “Model simulation of seasonal growth of Fucus vesiculosus in its benthic community”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,363,513 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book