Ocean acidification (OA) is a severe threat to coral reefs mainly by reducing their calcification rate. Identifying the resilience factors of corals to decreasing seawater pH is of paramount importance to predict the survivability of coral reefs in the future. This study compared corals adapted to variable pH (i.e., 7.23-8.06 pH units) from the semi-enclosed lagoon of Bouraké, New Caledonia, to corals adapted to more stable seawater pH (i.e., 7.90-8.18 pH units). In a 100-day aquarium experiment, we examined the physiological response and genetic diversity of Symbiodiniaceae from three coral species ( Acropora tenuis , Montipora digitata and Porites sp.) from both sites under three stable pH conditions (i.e., 8.11, 7.76, 7.54 pH units) and fluctuating pH conditions (i.e., between 7.56 and 8.07 pH units). Bouraké corals consistently exhibited higher growth rates than corals from the stable pH environment, with specific ITS2 intragenomic variant profiles. While OA generally decreased coral calcification by ca. 16%, Bouraké coralsshowed higher growth rates (21 to 93% increase, depending on species with all pH conditions pooled) than those from the stable pH environment. This superior performance coincided with divergent ITS2-like profiles with better consistency for both variable and low pH conditions. This response was not gained by corals from the more stable environment exposed to variable pH during the four-month experiment, suggesting that such a kind of plasticity is time dependent. Future long-term experiments should address the exposure duration required to confer fitness benefits for sustained calcification, hopefully fast enough to cope with the ongoing rapid OA.
Tanvet C., Camp E., Sutton J., Houlbreque F., Thouzeau G. & Rodolfo-Metalpa R., 2022. Corals adapted to extreme and fluctuating seawater pH increase calcification rates and have unique symbiont communities. Authorea Preprints. Article.