Role of coral symbiont in coral resilience under future ocean conditions

Anthropogenic climate change is leading to severe consequences for coral reefs because it disrupts the mutualistic partnership between the coral host and their dinoflagellate endosymbionts (Family: Symbiodiniaceae). Ocean acidification (OA) and ocean warming lead to reduced coral growth, causes coral bleaching, and increases coral mortality. One mechanism of long-term acclimatization to thermal stress by corals is to acquire more thermally tolerant symbiont lineages or increase the proportion of thermally tolerant lineages in the symbiont community. Using a combination of field and long-term mesocosm experiments this research investigated the main drivers of Symbiodiniaceae community composition in some of the main corals in Hawai‘i. The first chapter elucidates the baseline symbiont community composition of 600 colonies of Montipora capitata sampled from 30 reefs across the range of environmental conditions that occur in Kāne‘ohe Bay. Symbiodiniaceae community differed markedly across sites, with M. capitata in the most open-ocean (northern) site hosting few or none of the genus Durusdinium, whereas individuals at other sites had a mix of Durusdinium and Cladocopium. The second chapter then investigates how the symbiont composition of those same individually marked colonies responded to the 2019 bleaching event. The relative proportion of the heat-tolerant symbiont Durusdinium increased in most parts of the bay, but despite this significant increase in abundance, the overall algal symbiont community composition was largely unchanged. Rather than bleaching stress, symbiont community composition was driven by environmentally designated regions across the bay, and remained differentiated and similar to pre-bleaching composition. Among measured variables, depth and variability in temperature were the most significant drivers of Symbiodiniaceae community composition among sites, regardless of bleaching intensity or change in relative proportion of Durusdinium. The final chapter investigates the role of specificity in the symbiont community composition for eight of the main Hawaiian corals sampled from six different locations around O‘ahu. Corals were then maintained for ~2.5 years under temperature and acidification conditions predicted by the end of the century in a mesocosm experiment to determine the response of their symbiont communities to climate change and test for environmental memory. Symbiodiniaceae communities were highly specific in each of the eight coral species-, and site-specific differences in community composition were lost by the end of the experiment in the common garden ambient treatment. Future ocean conditions lead to an increase in stress resilient symbionts (e.g., Durusdinium) in some species, whereas others became more vulnerable to the infection of opportunistic symbionts (e.g., Symbiodinium or Breviolum). Temperature was found to be the main driver of change, whereas there was no significant effect of acidification on symbiont community composition. Provenance of corals mattered, because corals from some locations responded differently than conspecifics from other locations confirming an environmental memory effect. Together these results highlight the complexity in predicting coral response to future ocean conditions. Algal symbiont community composition of corals changes in response to their environment, and that this response is dependent on both the coral species and their site of origin, highlighting the role of symbiont specificity and environmental memory in shaping coral resilience.

Rocha de Souza M., 2022. Role of coral symbiont in coral resilience under future ocean conditions. PhD thesis, University of Hawai’i at Manoa. 156 p. Thesis.

  • Reset


OA-ICC Highlights

%d bloggers like this: