Effects of triclosan exposure on the energy budget of Ruditapes philippinarum and R. decussatus under climate change scenarios


  • Environmental triclosan levels alter the reproductive output of R. philippinarum.
  • Environmental triclosan levels reduce body mass in R. philippinarum.
  • R. decussatus growth was resilient to environmental changes.
  • Worst case scenario (TCS and climate change) will affect Manila clam production.


We built a simulation model based on Dynamic Energy Budget theory (DEB) to assess the growth and reproductive potential of the native European clam Ruditapes decussatus and the introduced Manila clam Ruditapes philippinarum under current temperature and pH conditions in a Portuguese estuary and under those forecasted for the end of the 21st c. The climate change scenario RCP8.5 predicts temperature increase of 3 °C and a pH decrease of 0.4 units. The model was run under additional conditions of exposure to the emerging contaminant triclosan (TCS) and in the absence of this compound. The parameters of the DEB model were calibrated with the results of laboratory experiments complemented with data from the literature available for these two important commercial shellfish resources. For each species and experimental condition (eight combinations), we used data from the experiments to produce estimates for the key parameters controlling food intake flux, assimilation flux, somatic maintenance flux and energy at the initial simulation time. The results showed that the growth and reproductive potential of both species would be compromised under future climate conditions, but the effect of TCS exposure had a higher impact on the energy budget than forecasted temperature and pH variations. The egg production of R. philippinarum was projected to suffer a more marked reduction with exposure to TCS, regardless of the climatic factor, while the native R. decussatus appeared more resilient to environmental causes of stress. The results suggest a likely decrease in the rates of expansion of the introduced R. philippinarum in European waters, and negative effects on fisheries and aquaculture production of exposure to emerging contaminants (e.g., TCS) and climate change.

Maynou F., Costa S., Freitas R. & Solé M., 2021. Effects of triclosan exposure on the energy budget of Ruditapes philippinarum and R. decussatus under climate change scenarios. Science of The Total Environment 777: 146068. doi: 10.1016/j.scitotenv.2021.146068. Article.

  • Reset


OA-ICC Highlights

%d bloggers like this: