Ecotoxicological responses of a reef calcifier exposed to copper, acidification and warming: a multiple biomarker approach

Highlights

• Copper increased bleaching, respiration and inhibited calcification-related enzymes.

• Thermal stress was the main driver of mortality.

• Relative tolerance to climate change scenario (ocean warming + acidification).

• Integrated biomarker response related more to co-exposures than isolated biomarkers.

• Integrated analysis showed higher stress under climate change + copper condition.

Abstract

Multiple global and local stressors threat coral reefs worldwide, and symbiont-bearing foraminifera are bioindicators of reef health. The aim of this study was to investigate single and combined effects of copper (Cu) and climate change related stressors (ocean acidification and warming) on a symbiont-bearing foraminifer by means of an integrated biomarker analysis. Using a mesocosm approach, Amphistegina gibbosa were exposed for 25 days to acidification, warming and/or Cu contamination on a full orthogonal design (two levels each factor). Cu was the main factor increasing bleaching and respiration rates. Warming was the main cause of mortality and reduced growth. Calcification related enzymes were inhibited in response to Cu exposure and, in general, the inhibition was stronger under climate change. Multiple biological endpoints responded to realistic exposure scenarios in different ways, but evidenced general stress posed by climate change combined with Cu. These biological responses drove the high values found for the ‘stress index’ IBR (Integrated Biomarker Response) – indicating general organismal health impairment under the multiple stressor scenario. Our results provide insights for coral reef management by detecting potential monitoring tools. The ecotoxicological responses indicated that Cu reduces the tolerance of foraminifera to climate change (acidification + warming). Once the endpoints analysed have a high ecological relevance, and that responses were evaluated on a classical reef bioindicator species, these results highlight the high risk of climate change and metal pollution co-exposure to coral reefs. Integrated responses allowed a better effects comprehension and are pointed as a promising tool to monitor pollution effects on a changing ocean.

Marques J. A., Abrantes D. P., Marangoni L. F. B. & Bianchini A., in press. Ecotoxicological responses of a reef calcifier exposed to copper, acidification and warming: a multiple biomarker approach. Environmental Pollution. Article (subscription required).


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: