Ocean acidification and anthropogenic carbon in the Eastern Mediterranean Sea and the effects of acidification on marine organisms

Ocean acidification (OA), driven by rising atmospheric carbon dioxide (CO2) levels, is a critical issue affecting our oceans. The Eastern Mediterranean Sea (EMS) remains poorly understood in terms of the carbonate system and the impact of OA, despite its key role in Levantine Intermediate Water (LIW) formation and its peculiar characteristics in buffering capacity and ongoing OA. This study provides the first comprehensive spatial and temporal assessment of carbonate system in the North-Eastern Levantine Basin, in EMS, providing essential reference data for Total Alkalinity (TA), Dissolved Inorganic Carbon (DIC), and Anthropogenic Carbon (CANT). The mean TA of the measurements was 2622.11 μmol/kg, with higher surface values in summer, reflected also in the surface salinity (S) maximum caused by strong evaporation. A clear vertical gradient was observed, with TA decreasing with depth. Hot and dry meteorological conditions contribute to increased S and TA, resulting in seasonal and vertical variations in the water column. The mean DIC of the measurements was 2291.23 μmol/kg. In contrast to the observations for TA, surface DIC values were higher in winter than in summer. The higher DIC values in winter are attributed to thermodynamic equilibrium and vertical mixing in the surface waters. This study has also investigates the presence of CANT, has infiltrated deep layers, with a mean concentration of 52.07 μmol/kg, decreasing significantly throughout the water column. These findings confirms the ongoing influence of human activities on intermediate and deep layers in EMS. To reconstruct past carbonate system dynamics, the relationships of TA and DIC were determined with salinity (S) and temperature (T) data. Long-term data from METU-IMS Erdemli Time Series (ETS) stations, collected monthly for a decade, provided valuable findings into seasonal patterns and temporal shifts in TA, DIC, and pH. The coastal station displayed clear trends in the carbonate system over time, reflecting its sensitivity to local environmental changes. In contrast, the offshore station exhibited minimal variability, indicating greater stability against seasonal and long-term fluctuations. These results highlight the heightened vulnerability of coastal waters to carbonate system changes, while offshore waters remain more stable. Understanding carbonate chemistry and acidification levels is crucial for assessing impacts on marine life. In addition to the characterization of carbonate chemistry, this study also explores OA’s biological impacts on two key organisms of the Mediterranean ecosystem: phytoplankton and mussels. Firstly, effects of elevated CO₂ on phytoplankton, an essential primary producer in aquatic food webs and global biogeochemical cycles are explored. Specifically, the study explores the impacts on phytoplankton physiology, focusing on growth rates, respiration, and photopigment content in selected species from the coccolithophores, dinoflagellates, and diatoms groups. While growth rates and respiration remained relatively stable under reduced pH conditions, photopigment content was significantly influenced by changes in seawater pH, highlighting the importance of considering environmental influences on photopigment composition. The study further investigated the effects of acidification on calcifying organisms through a global program aimed at understanding the long-term effects of acidification on key seafood species and exploring adaptation strategies with a collaborative approach. This study focused on the long-term (6 months long experiment) physiological impacts of OA on marine calcifiers, specifically Mediterranean mussel, Mytilus galloprovincialis, an abundant species and one of the most consumed non-fish marine species in Türkiye. Results indicate that OA poses a substantial threat to mussel health and survival. Reduced pH levels negatively impacted survival rates, while other physiological parameters like clearance rate, condition index, respiration, and the distribution of a radionuclide, 210Po, did not significantly change. However, lipid content and immune response were affected. Oxygen consumption decreased over time, especially at lower pH. This study underscores the potential risks of OA to the fitness of the commercially important mussel species, indicating that future OA may impact both this key seafood species and its associated ecosystems. The established baseline data are crucial for future monitoring and provide valuable insights into the vulnerability of marine organisms and ecosystems to ongoing OA. By integrating chemical, biological, and ecological perspectives, this dissertation offers a comprehensive assessment of OA in EMS. It establishes baseline data for carbonate system variables, revealing distinct spatial and temporal variations influenced by S, T, and mixing processes. By linking changes in carbonate chemistry to physiological responses in primary producers and a commercially vital shellfish species, this study highlights the ecological and economic impacts of OA in EMS. The findings emphasize the need for continued research and mitigation efforts to protect marine ecosystems and commercially important species. This integrated approach provides valuable insights into the vulnerability of marine organisms and ecosystems to ongoing OA, underscoring the significance of this research for the Mediterranean Sea.

Kocaman E., 2025. Ocean acidification and anthropogenic carbon in the Eastern Mediterranean Sea and the effects of acidification on marine organisms. MSc thesis, Middle East Technical University. Thesis (restricted access).

0 Responses to “Ocean acidification and anthropogenic carbon in the Eastern Mediterranean Sea and the effects of acidification on marine organisms”



  1. Leave a Comment

Leave a Reply




Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading