The impact of climate change stressors on microbial respiration and community structure: ocean acidification and artificial upwellling

Microbial community respiration significantly influences the oceans capacity to sequester CO2 in marine ecosystems. Despite its pivotal role, there remains limited understanding of the variability and magnitude of community respiration in marine ecosystems, especially regarding its sensitivity to climate change stressors. This knowledge gap hinders a comprehensive grasp of its contribution to the global carbon cycle. Traditional in situ approaches for measuring community respiration are subject to several methodological limitations, particularly that of sensitivity in oligotrophic ecosystems, which cover more than 40% of the Earth’s ocean surface. These limitations thus contribute significantly to the uncertainty in global estimates of carbon budgets. To address these challenges, enzymatic techniques such as ETSvitro offer a fast and sensitive method to assess respiratory activity rates at spatial scales that are difficult to cover using conventional approaches. The method involves reducing the tetrazolium salt, INT, within the respiratory chain under substrate saturation levels (i.e., NADH, NADPH, and succinate). However, the reliability of the ETSvitro method has been questioned because it measures potential respiratory activity rather than actual respiration. In response to these concerns, another enzymatic technique, ETSvivo, emerged presumably as a more realistic estimate of actual respiration. Unlike ETSvitro, ETSvivo measures INT under in vivo conditions, utilizing substrates naturally available inside the cell. Nevertheless, before these methods can be considered feasible proxies for community respiration, further evaluation is needed to determine their universal applicability in marine ecosystems. In this thesis, our objective was to improve our understanding of community respiration by addressing its methodological limitations and investigating the drivers responsible for its variability. We paid particular attention to planktonic community structure and the impact of two climate change stressors: ocean acidification and changes in nutrient fertilization. Simulating a typical ETSvivo assay in eight independent experiments using surface coastal and open ocean waters from the Canary region, we observed that INT alone significantly influences the physiological status of bacteria. Bacteria are considered the primary contributors to respiration in oligotrophic environments, but their physiological status is largely affected by the inherent toxicity of INT. Consequently, we question the applicability of the ETSvivo method as a proxy for community respiration in oligotrophic regions. On the other hand, we explore the temporal variability of respiratory metabolism through two mesocosm experiments conducted in the oligotrophic waters of the subtropical Eastern North Atlantic. In the first mesocosms experiment, we investigated the impact of changing community structure and biomass on the temporal variability of community respiration measured through the Winkler method (R), ETS activity, and their ratio (R/ETS) in response to increasing CO2 concentrations and nutrient fertilization (e.g., due to local upwelling events). Our results suggest that community respiration and ETS activity do not respond to CO2 during oligotrophic conditions. However, following fertilization, community respiration increased in the two high CO2 mesocosms coinciding with an increase in microplankton, primarily diatoms. Simultaneously, the R/ETS ratio showed no correlation with community structure or biomass, indicating its variability makes it unsuitable for application with communities undergoing abrupt changes in trophic conditions. In light of these findings, the second mesocosm experiment explored the influence of different upwelling intensities and frequencies (singular pulse versus recurring upwelling) on community respiration. Our results demonstrate that community respiration is sensitive to changes in upwelling intensities but more significantly to the mode in which nutrients are supplied to oligotrophic waters. The planktonic community structure significantly influenced the observed variability in community respiration, revealing notable differences under varying upwelling intensities.The results of this thesis underscore the significance of mitigating methodological uncertainties to achieve precise measurements of respiration rates. It is crucial to adequately assess the impact of climate change-induced stressors, especially ocean acidification and changes in nutrient fertilization, along with planktonic community structure, as drivers of temporal variability. This thorough examination is essential for gaining a deeper understanding and, consequently, making more accurate predictions of community respiration in marine ecosystems.

Cerón M. I. B., 2024. The impact of climate change stressors on microbial respiration and community structure: ocean acidification and artificial upwellling. PhD Thesis, Universidad de Las Palmas de Gran Canaria. 108 p. Thesis.


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading