Global review of the impact of naturally occurring shallow water CO2 seeps

Studying the local impacts of natural marine discharges can help in understanding the local impacts of large-scale restoration programs. This paper reviews studies of naturally occurring CO2 rich hydrothermal vents to understand how nature responds. Venting CO2 raises both total DIC, and the CO2 partial pressure by a factor of 10 or 20 times, lowering the pH and the saturation state of calcium carbonate, impeding calcification by calcifying organisms.

The ocean is a relatively stable environment and significant changes to water chemistry caused by high levels of CO2 input impacts marine organisms. Many algae are able to survive and photosynthesise at low pH levels, and some may actually benefit from an increase in dissolved CO2. However, coralline and calcareous algae that form carbonate skeletons are negatively impacted at low pH. Ecologically and economically valuable marine flora such as kelp, seagrass and certain seaweeds can benefit from increased DIC, exhibiting increases in photosynthetic and growth rates. Kelp and seagrass may also increase local pH levels, creating refuges for calcifying marine species.

The calcification rates of Many marine invertebrates decrease with increasing pCO2. At sites closer to vent openings, with lower pH, the abundance and diversity of invertebrates is significantly reduced. This can impact species valuable to the fishery and aquaculture industry by directly affecting recruitment, growth and survivorship of species such as mussels and oysters and indirectly through reduced abundance of invertebrate prey for herring and mackerel. Corals are also negatively impacted by declining pH and calcium carbonate saturation, yet not all hard corals respond evenly. More resilient genera such as Porites can survive pH drops to approximately 7.8, however below this value reef development is virtually absent and the habitat is dominated by algae and soft corals.

Naturally occurring low pH sites are relatively common in the marine environment and though they clearly alter species composition and abundance, the locally lower pH does not kill marine life, and beyond dispersion zones species are unaffected. Global ocean acidification is a serious problem, however the impacts of local releases of CO2 are relatively limited, resulting in community shifts towards low pH tolerant species. Reversal of global ocean acidification is essential, and restoration of the oceans will require huge carbon dioxide removal (CDR) processes.

Dryden C., Joynson J. & Willis S., in press. Global review of the impact of naturally occurring shallow water CO2 seeps. A Negative Emissions Paper from Herculean Climate Solutions. Article.


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: