Climate change alters the haemolymph microbiome of oysters

Highlights

  • Elevated pCO2 and temperature caused shifts in the oyster haemolymph microbiome.
  • Elevated pCO2 was the strongest driver of species diversity and richness.
  • Elevated pCO2 and temperature caused a loss of “core” bacteria.
  • There was no evidence for a shift in the microbiome from a mutualistic to pathogenic state.

Abstract

The wellbeing of marine organisms is connected to their microbiome. Oysters are a vital food source and provide ecological services, yet little is known about how climate change such as ocean acidification and warming will affect their microbiome. We exposed the Sydney rock oyster, Saccostrea glomerata, to orthogonal combinations of temperature (24, 28 °C) and pCO2 (400 and 1000 μatm) for eight weeks and used amplicon sequencing of the 16S rRNA (V3-V4) gene to characterise the bacterial community in haemolymph. Overall, elevated pCO2 and temperature interacted to alter the microbiome of oysters, with a clear partitioning of treatments in CAP ordinations. Elevated pCO2 was the strongest driver of species diversity and richness and elevated temperature also increased species richness. Climate change, both ocean acidification and warming, will alter the microbiome of Sglomerata which may increase the susceptibility of oysters to disease.

Scanes E., Parker L. M., Seymour J. R., Siboni N., King W. L., Danckert N. P., Wegner K. M., Dove M. C., O’Connor W. A. & Ross P. M., 2021. Climate change alters the haemolymph microbiome of oysters. Marine Pollution Bulletin 164: 111991. doi: 10.1016/j.marpolbul.2021.111991. Article (subscription required).

0 Responses to “Climate change alters the haemolymph microbiome of oysters”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Follow AnneMarin on Twitter

Archives

Powered by FeedBurner

Blog Stats

  • 1,451,106 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book