Physiological responses to temperature and ocean acidification in tropical fleshy macroalgae with varying affinities for inorganic carbon

Marine macroalgae have variable carbon-uptake strategies that complicate predicting responses to environmental changes. In seawater, dissolved inorganic carbon availability can affect the underlying physiological mechanisms influencing carbon uptake. We tested the interactive effects of ocean acidification (OA) and warming on two HCO−3HCO3−-users (Lobophora sp. and Amansia rhodantha), a predominately CO2-user (Avrainvillea nigricans), and a sole CO2-user (Plocamium hamatum) in the Great Barrier Reef, Australia. We examined metabolic rates, growth, and carbon isotope values (δ13C) in algae at 26, 28, or 30°C under ambient or elevated pCO2 (∼1000 µatm). Under OA, δ13C values for the HCO−3HCO3−-users decreased, indicating less reliance on HCO−3HCO3−⁠, while δ13C values for CO2-users were unaffected. Both HCO−3HCO3−-users decreased in growth across temperatures under ambient pCO2, but this negative effect was alleviated by OA at 30°C. A. nigricans lost biomass across all treatments and P. hamatum was most sensitive, with reduced survival in all physiological responses. Metabolic rates varied greatly to interacting temperature and OA and indicated a decoupling between the relationship of photosynthesis and growth. Furthermore, our findings suggest HCO−3HCO3−-users are more responsive to future CO2 changes, and highlight examining carbon physiology to infer potential responses to interacting environmental stressors.

Ho M., McBroom J., Bergstrom E. & Diaz-Pulido G., 2020. Physiological responses to temperature and ocean acidification in tropical fleshy macroalgae with varying affinities for inorganic carbon. ICES Journal of Marine Science: fsaa195. doi: 10.1093/icesjms/fsaa195. Article (subscription required).

0 Responses to “Physiological responses to temperature and ocean acidification in tropical fleshy macroalgae with varying affinities for inorganic carbon”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,440,536 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives