From marine snails to marine spatial planning : the science of human impacts and relationships with marine ecosystems

Extractive human systems are driving unprecedented biodiversity loss and exacerbating social inequity. The magnitude of the intertwined climate, biodiversity, and social inequity crises has prompted the development of interdisciplinary research approaches to address these complex problems. One such approach, social-ecological systems (SES), aims to understand the relationships between coupled human and ecological systems. This thesis applies an SES lens to understand the science of human impacts on and relationships with marine ecosystems and inform characterizations of system vulnerability. First, I examined the sensitivity of marine ectothermic animals to climate change by conducting a meta-analysis of the effects of ocean acidification and warming. My synthesis of nearly five hundred factorial studies demonstrates the negative effects of these two drivers, identifies specific taxonomic groups (molluscs), life- history traits (adults, sessile), and latitudes (tropical and temperate) that are more sensitive, and refutes two common assumptions about the drivers’ interactive effects. Next, I tested whether populations of a marine snail vary in their vulnerability to ocean warming based on thermal sensitivity and local rates of ocean warming. Using coupled lab and field experiments with snails from two regions in the middle of their range that differ in thermal characteristics, I found that snails from the warmer Salish Sea, an urban sea, showed greater vulnerability to ocean warming than those from the cooler central coast of British Columbia, Canada. Finally, to inform how humans can mitigate our impacts while sustaining complex relationships with the ocean, I partnered with the Sḵwx̲wú7mesh Úxwumixw (Squamish Nation) and regional stewardship organizations on a marine spatial planning project in the Salish Sea. I employed a mixed- methods community-based participatory mapping approach to characterize place-based values and outline opportunities to decolonize research and mapping processes. The results contribute important social data about place-based values, reveal value interactions, reflect knowledge system plurality, and identify avenues to advance reconciliation. Overall, this thesis highlights the vulnerability of marine life, particularly life within urban seas, to climate change and provides a roadmap for researchers and decision-makers to meaningfully steward the health and well-being of coastal social-ecological systems.

Beaty F., 2023. From marine snails to marine spatial planning : the science of human impacts and relationships with marine ecosystems. PhD thesis, University of British Columbia, 220 p. Thesis.

  • Reset


OA-ICC Highlights

%d bloggers like this: