Ocean acidification upwelling events and the resulting lowered aragonite saturation state of seawater have been linked to high mortality of marine bivalve larvae in hatcheries. Major oyster seed producers along North America’s west coast have mitigated impacts via seawater pH buffering (e.g., addition of soda ash). However, little consideration has been given to whether such practice may impact the larval microbiome, with potential carry-over effects on immune competency and disease susceptibility in later-life stages. To investigate possible impacts, Pacific oysters (Crassostrea gigas) were reared under soda ash pH buffered or ambient pH seawater conditions for the first 24 h of development. Both treatment groups were then reared under ambient pH conditions for the remainder of the developmental period. Larval microbiome, immune status (via gene expression), growth, and survival were assessed throughout the developmental period. Juveniles and adults arising from the larval run were then subjected to laboratory-based disease challenges to investigate carry-over effects. Larvae reared under buffered conditions showed an altered microbiome, which was still evident in juvenile animals. Moreover, reduced survival was observed in both juveniles and adults of the buffered group under a simulated marine heatwave and Vibrio exposure compared with those reared under ambient conditions. Results suggest that soda ash pH buffering during early development may compromise later-life stages under stressor conditions, and illustrate the importance of a long-view approach with regard to hatchery husbandry practices and climate change mitigation.
Mackenzie C. L, Pearce C. M., Leduc S., Roth D., Kellogg C. T., Clemente-Carvalho R. B. & Green T. J., 2022. Impacts of seawater pH buffering on the larval microbiome and carry-over effects on later-life disease susceptibility in Pacific oysters. Applied and Environmental Microbiology: e01654-22. doi: 10.1128/aem.01654-22. Article.