Individual-based modeling of shelled pteropods

Highlights

  • First shelled pteropod individual-based model (IBM) based on Limacinidae species.
  • Shelled pteropod IBM reproduces the abundance signal measured at temperate latitudes.
  • The pteropod IBM provides the life-stage composition, and life-stage progression of populations.
  • IBM might be used for quantifying ongoing and future effects of climate change.

Abstract

Shelled pteropods are cosmopolitan, free-swimming organisms of biogeochemical and commercial importance. They are widely used as sentinel species for the overall response of marine ecosystems to environmental stressors associated with climate change and changes in ocean chemistry. However, currently we are unable to project the effects of climate change on shelled pteropods at the population level, due to the missing spatio-temporal characterization of the response of pteropods to environmental stressors, and the limited information on the pteropod life history and life-cycle. In this study, we implement a shelled pteropod Individual-Based Model (IBM), i.e. we simulate a pteropod population as a set of discrete individuals over several generations, life-stages (eggs, larvae, juveniles and adults) and as a function of temperature, food availability, and aragonite saturation state. The model is able to provide an abundance signal that is consistent with the abundance signal measured in the temperate region. In addition, the modeled life-stage progression matches the reported size spectrum across the year, with two major spawning periods in spring and fall, and maturation in March and September. Furthermore, our IBM correctly predicts the abundance maxima of younger, smaller and potentially more susceptible life-stages in spring and winter. Thus, our model provides a tool for advancing our understanding of the response of pteropod populations to future environmental changes.

Hofmann Elizondo U. & Vogt M., 2022. Individual-based modeling of shelled pteropods. Ecological Modelling 468: 109944. doi: 10.1016/j.ecolmodel.2022.109944. Article.


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: