Evolved differences in energy metabolism and growth dictate the impacts of ocean acidification on abalone aquaculture

Ocean acidification (OA) poses a major threat to marine ecosystems and shellfish aquaculture. A promising mitigation strategy is the identification and breeding of shellfish varieties exhibiting resilience to acidification stress. We experimentally compared the effects of OA on two populations of red abalone (Haliotis rufescens), a marine mollusc important to fisheries and global aquaculture. Results from our experiments simulating captive aquaculture conditions demonstrated that abalone sourced from a strong upwelling region were tolerant of ongoing OA, whereas a captive-raised population sourced from a region of weaker upwelling exhibited significant mortality and vulnerability to OA. This difference was linked to population-specific variation in the maternal provisioning of lipids to offspring, with a positive correlation between lipid concentrations and survival under OA. This relationship also persisted in experiments on second-generation animals, and larval lipid consumption rates varied among paternal crosses, which is consistent with the presence of genetic variation for physiological traits relevant for OA survival. Across experimental trials, growth rates differed among family lineages, and the highest mortality under OA occurred in the fastest growing crosses. Identifying traits that convey resilience to OA is critical to the continued success of abalone and other shellfish production, and these mitigation efforts should be incorporated into breeding programs for commercial and restoration aquaculture.

Swezey D. S., Boles S. E., Aquilino K. M., Stott H. K., Bush D., Whitehead A., Rogers-Bennett L., Hill T. M. & Sanford E., 2020. Evolved differences in energy metabolism and growth dictate the impacts of ocean acidification on abalone aquaculture. Proceedings of the National Academy of Sciences: 202006910. doi: 10.1073/pnas.2006910117. Article.

0 Responses to “Evolved differences in energy metabolism and growth dictate the impacts of ocean acidification on abalone aquaculture”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,389,383 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives