Marine mass mortality in a global change context: impacts on individuals, populations and communities

Human actions are pushing natural systems into states that have no historical precedent. In response, empirical and theoretical researchers are increasingly focused on developing ways to predict the responses of ecological systems to change. However, significant knowledge gaps remain, often leading to “ecological surprises” where observed impacts of global change do not align with existing theory or hypotheses. In this dissertation, I study the response to perturbations of a well-characterized system for ecological research, the Northeast Pacific rocky intertidal, to advance our understanding of and ability to predict the impacts of global change on individuals, populations and communities. In 2013 and 2014, sea star species along the west coast of North America were affected by an outbreak of Sea Star Wasting Syndrome (SSWS), resulting in an epidemic of mass mortality that spanned unprecedented geographic and temporal scales and resulted in the near extirpation of multiple sea star species from many locations along the coast. One of the species that was most strongly affected in the intertidal zone was Pisaster ochraceus, an iconic predatory sea star that has the ability to play a keystone role in its community through foraging on and ultimately controlling the lower boundary of mussel prey populations. The first two chapters of this dissertation take advantage of SSWS as a “natural” form of top predator removal to assess the consequences of this type of perturbation on ecosystem resilience. In Chapter 2, I tested the hypotheses that P. ochraceus loss would facilitate a population expansion of a smaller, mesopredator sea star, Leptasterias sp., and that this expansion would have negative effects on P. ochraceus population recovery. This result would follow expectations of competitive release and aligns with existing research on the competitive relationship between these species from the Northeast Pacific intertidal. I used field surveys to track Leptasterias populations just before the onset of and up to three years after SSWS. Contrary to expectation, I did not see an increase in the distribution or density of Leptasterias, and instead saw a decrease in individual size post-SSWS. Further, I found no evidence of competition between P. ochraceus recruits and Leptasterias for resources. Thus, although my hypotheses were grounded in theory and previous research, they were not supported by data. These results suggest that Leptasterias will not provide a bottleneck for P. ochraceus population recovery from SSWS, nor compensate for lowered P. ochraceus predation. The dynamics of P. ochraceus at the recruit (early benthic juvenile) life-history stage has long been considered a gap in our understanding of the species, as recruits have been historically rare in the intertidal and hard to study. Post-SSWS, however, many sites along the coast experienced unprecedented recruitment of P. ochraceus into intertidal ecosystems. In Chapter 3, I used a field experiment to test the hypothesis that this pulse of recruitment was facilitated by SSWS-related adult loss, the consequent decrease in predation by adult P. ochraceus, and increase in prey availability for recruits. Instead of finding evidence that adults dominate recruits in food competition and inhibit recruit success, I found that recruits have a negative effect on P. ochraceus adult densities. Further, treatments where recruits were excluded and only adults had access to prey communities showed the highest control of sessile invertebrate prey populations at the end of the year-long experiment. Thus, these results suggest that adult P. ochraceus will not hinder recruit recovery, but propose a mechanism whereby high recruit densities may increase vulnerability to SSWS-induced shifts in community structure. Outbreaks of mass mortality, particularly those as widespread as SSWS, are one of many ecological challenges driven by anthropogenic environmental changes such as warming and ocean acidification. However, predicting the vulnerability of species and populations to global change is an ongoing and significant challenge for researchers and managers. In Chapter 4 I assessed whether intraspecific physiological variability could help predict P. ochraceus recruit response to ocean acidification and warming. I found that individual metabolic rate interacted with ocean acidification and food availability to drive sea star growth, and that an interaction between metabolic rate and temperature also predicted sea star predation on Mytilus spp. mussels. Thus, these results have implications not only for P. ochraceus but also for its food web interactions. Incorporating these results into predictive frameworks may improve our ability to anticipate and scale up responses to global change across levels of ecological organization. In summary, my dissertation, although chock-full of surprises, presents several paths forward for improving predictive ability in the face of accelerating anthropogenic global changes. Further, we reinforce the notion that management strategies should be cautious and anticipate ecological surprises. Predicting the future is challenging even when predictions are well-informed, particularly in environmental contexts that have never been encountered before.

Stack J. S., 2019. Marine mass mortality in a global change context: impacts on individuals, populations and communities. PhD thesis, Oregon State University. Thesis.

0 Responses to “Marine mass mortality in a global change context: impacts on individuals, populations and communities”



  1. Leave a Comment

Leave a Reply




Subscribe to the RSS feed

Follow AnneMarin on Twitter

Blog Stats

  • 1,410,421 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book


%d bloggers like this: