Interactive effects of ocean acidification and benthic biofilm composition on the early development of the European abalone Haliotis tuberculata

Ocean acidification (OA) and associated shifts in carbonate chemistry represent major threats to marine organisms, particularly calcifiers. OA effects can be influenced by other environmental variables, including the biotic environment. This study investigated the individual and interactive effects of OA and algal density, acting through biofilm composition, on post-larval and juvenile abalone (Haliotis tuberculata). In a three-month factorial experiment, abalone were exposed from metamorphosis onward to two pH conditions (ambient 8.0 and reduced 7.7) and two initial densities of the green alga Ulvella lens on settlement plates. Biofilm biomass and composition were characterised using spectral reflectance and HPLC pigment analysis. Biological (density, length), physiological (respiration rate), behavioural (hiding response) and shell parameters (colour, surface corrosion, strength) of abalone were measured throughout the experiment. Biofilm biomass and composition remained relatively stable under both pH conditions, though greater variability in algal biomass occurred at low initial Ulvella density. Post-larval density and total length decreased significantly under low pH, while high Ulvella density reduced juvenile length at 80 days, likely due to competition between algal groups. A pH × Ulvella interaction affected shell fracture resistance and colouration, but not metabolism or behaviour, indicating that juvenile abalone maintained vital functions. Overall, the results confirm the sensitivity of early H. tuberculata stages to moderate OA (−0.3 pH units) and highlight indirect macroalgal effects through changes in diatom communities. In natural environments, the capacity of abalone to cope with future OA will depend on complex trade-offs between direct acidification effects and food-related biotic interactions.

Auzoux-Bordenave S., Kavousi J., Nédélec K., Martin S., Badou A., Dubois P., M’Zoudi S., Hubas C., Huchette S. & Roussel S., 2025 Interactive effects of ocean acidification and benthic biofilm composition on the early development of the European abalone Haliotis tuberculataSSRN. Article.

0 Responses to “Interactive effects of ocean acidification and benthic biofilm composition on the early development of the European abalone Haliotis tuberculata”



  1. Leave a Comment

Leave a Reply




Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading