A global meta-analysis reveals consistently negative effects of ocean acidification on marine cultured bivalves: implications for future bivalve aquaculture

The exponential rise in atmospheric CO₂ driven by human activities is accelerating climate change and causing ocean acidification (OA). While the effects of elevated CO₂ on a wide range of marine species have been well documented, the implications of OA for bivalve aquaculture have received comparatively little attention. Using a multi-level meta-analytical approach, we evaluated the impacts of two elevated pCO₂ levels—classified as high and extreme—on cultured bivalves, based on 266 observations from 24 species across tropical and temperate regions. Overall, both elevated pCO₂ levels negatively affected bivalves, reducing survival, growth, feeding rates, development, and calcification. Larvae were generally more vulnerable than juveniles and adults. Our analyses further indicated that temperate bivalves were more sensitive to OA than tropical and subtropical counterparts. Among taxa, clams were the most vulnerable under high CO₂ emission scenarios, whereas scallops were the most sensitive under extreme pCO₂ levels. We also discuss potential mitigation strategies for the bivalve aquaculture industry. With advancements in local and regional monitoring, coupled with targeted measures such as buffering sites, selective breeding, and integrated multi-trophic aquaculture, the adverse effects of OA on bivalve farming could be mitigated.

Hu N., Wang Z. & Sun J., 2026. A global meta-analysis reveals consistently negative effects of ocean acidification on marine cultured bivalves: implications for future bivalve aquaculture. Reviews in Fish Biology and Fisheries 36: 10. doi: 10.1007/s11160-025-10005-4. Article.

0 Responses to “A global meta-analysis reveals consistently negative effects of ocean acidification on marine cultured bivalves: implications for future bivalve aquaculture”



  1. Leave a Comment

Leave a Reply




Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading