Projections of algae, eelgrass, and zooplankton ecological interactions in the inner Salish Sea – for future climate, and altered oceanic states

Highlights

  • Harmonized simulation of DO, pH, and Y2095 climate change impacts in the Salish Sea
  • A 52-fold increase in exposure and near-bed pelagic species to hypoxic waters in Y2095
  • Ocean acidification projections for Y2095 indicate ≈ 20 −114% increase in water column (ΩA) <1)
  • Primary productivity propagation to zooplankton projected for Y2095 with ≈ 13%−25% increases.
  • Eelgrass sensitive to stressors and potential for loss of eelgrass biomass in the future.

Abstract

Future projections based on the IPCC high emissions scenario RCP8.5 have previously shown that the Pacific Northwest coastal waters will be subjected to altered ocean states in the upwelled shelf waters, resulting in higher primary productivity and increased regions of hypoxia and acidification in the inner estuarine waters such as the Salish Sea. However, corresponding effects on the lower trophic levels and submerged aquatic vegetation have not yet been quantified. Supported by new synoptic field data, explicit coupled simulation of algae, zooplankton, and eelgrass biomass was accomplished for the first time in the Salish Sea. We re-applied the improved model to evaluate future ecological response and examined potential algal species shift, but with the effects of zooplankton production, metabolism, and predation-prey interactions included. We also evaluated the role of eelgrass with respect to potential for improvements to dissolved oxygen and pH levels and as a mitigation measure against hypoxia and ocean acidification. The results re-confirm the possibility that there could be a substantial area-days increase (≈52-fold) in exposure of benthic and near-bed pelagic species to hypoxic waters in 2095. The projections for ocean acidification similarly indicate ≈ 20 -114% increase in exposure to lower pH corrosive waters with aragonite saturation state ΩA <1. Importantly, projected increase in primary productivity was shown to propagate to higher trophic levels, with ≈ 13% and 25% increases in micro and mesozooplankton biomass levels. However, the preliminary results also point to sensitivity of the eelgrass model to environmental stressor and potential loss eelgrass biomass in the future.

Khangaonkar T., Nugraha A., Premathilake L., Keister J. & Borde A., 2021. Projections of algae, eelgrass, and zooplankton ecological interactions in the inner Salish Sea – for future climate, and altered oceanic states. Ecological Modelling 441: 109420. doi: 10.1016/j.ecolmodel.2020.109420. Article (subscription required).

0 Responses to “Projections of algae, eelgrass, and zooplankton ecological interactions in the inner Salish Sea – for future climate, and altered oceanic states”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,416,137 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives