Impact of temperature, low pH and NH4+ enrichment on ecophysiological responses of a green tide Species Ulva australis Areschoug

Ulva are ubiquitous and opportunistic green algae species that easily adapt to various environmental conditions. These algae are responsible for the green tides that cause many environmental and ecological problems in coastal waters. We investigated the physiological responses of Ulva australis under warming, acidification, and eutrophication conditions. The physiological changes in the algae were observed under various combinations of temperature, pH, and NH4+ levels. Combinations of three temperatures (10°C, 20°C, and 30°C), two pH levels (7.80 and 8.20), and two NH4+ concentrations (4 μM and 120 μM) were considered under laboratory conditions. Temperature, NH4+, and pH had significant impact on the photosynthetic and nutrient uptake rates. However, the 12 h observation could not stimulate the seaweed to change the pH in the cultured media. Changes in relative growth rates, photosynthetic efficiency, and variations in tissue C and N were not affected by the interactions between temperature, pH level, and nutrient concentration. It is probable that, due to global warming, the bloom of Ulva australis may continue in warm, acidic, coastal waters with high nutrient levels.

Kambey C. S. B., Kang J. W. & Chung I. K., 2020. Impact of temperature, low pH and NH4+ enrichment on ecophysiological responses of a green tide Species Ulva australis Areschoug. Ocean Science Journal 55: 115–127. Article (subscription required).

0 Responses to “Impact of temperature, low pH and NH4+ enrichment on ecophysiological responses of a green tide Species Ulva australis Areschoug”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,358,493 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book