The effects of aragonite saturation state on hatchery-reared larvae of the greenshell mussel Perna canaliculus

The major cultured mussel species Perna canaliculus is now supported by hatchery production, providing the opportunity to explore and optimize environmental parameters to enhance production. Other cultured bivalve larvae have demonstrated performance that is directly correlated to the aragonite saturation state (Ωar) of their tank water, with low or undersaturated water being detrimental and artificially elevated Ωar enhancing productivity. Trials were, therefore, designed to specifically explore Ωar sensitivity in preveliger (0–2 days old, prodissoconch I = “PD1″) and veliger (2–21 days old, prodissoconch II = “PD2″) stages of P. canaliculus separately. For the PD1 experiment, commercial incubation tanks (control Ωar 1.9) were modified to target Ωar 0.5 or 0.8 by elevating pCO2, or 2.9, 4.5, and ∼7 by the addition of sodium carbonate. In the control environment, 72.8% ± 2.9% of fertilized eggs formed viable “D” veligers within two days; an increased yield of 82.6% ± 3.8% in Ωar 4.5 was found to be nonsignificant. In comparison, only 12.7% of the Ωar ∼7 and <1% of the Ωar 0.5 and 0.8 eggs attained the veliger stage, with the remaining underdeveloped or malformed. By 2 days postfertilization, reactive oxygen species were significantly elevated in the undersaturated treatments, whereas DNA damage, lipid hydroperoxides, and protein carbonyls were significantly higher in the Ωar 0.5 and ∼7 treatments. Antioxidant enzyme levels were significantly lower in these extreme treatments, whereas Ωar 4.5 larvae showed elevated superoxide dismutase, glutathione reductase, and peroxidase levels. Carry-over effects persisted when veligers were transferred to control conditions, with no net recruitment from undersaturated Ωar, 29.4% of eggs surviving to pediveliger under control conditions, compared with 33.2% following Ωar 4.5 exposure or 1.9% from Ωar ∼7. In the PD2 veliger trial, linear shell growth halved in undersaturated water, but was unaffected by elevation of Ωar. Mortality rate was consistent across all treatments, suggesting relative resilience to different Ωar. It is recommended that hatcheries trial Ωar 4–4.5 enrichment in preveliger incubation water to improve yield and minimize oxidative stress. Preveliger stages present a potential survival bottleneck, and focused research exploring sensitivity to near-future ocean acidification is, therefore, needed.

Ragg N. L. C., Gale S. L., Le D. V., Hawes N. A., Burritt D. J., Young T., Ericson J. A., Hilton Z., Watts E., Berry J. & King N., 2019. The effects of aragonite saturation state on hatchery-reared larvae of the greenshell mussel Perna canaliculus. Journal of Shellfish Research 38 (3): 779-793. Article (subscription required).

0 Responses to “The effects of aragonite saturation state on hatchery-reared larvae of the greenshell mussel Perna canaliculus”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,388,007 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book