The interactive effects of ocean acidification, food availability, and source location on the growth and physiology of the California mussel

Research shows ocean acidification (OA) can have largely negative impacts on marine organisms and ecosystems. Prior laboratory studies show that shelled marine invertebrates (e.g., molluscs) exhibit reduced growth rates and weaker shells when experiencing OA-related stress. However, populations of the critical intertidal mussel species, Mytilus californianus, which experience naturally acidic water due to upwelling in certain parts of Northern California have been observed to have relatively stronger and thicker shells and higher growth rates than those that experience less frequent exposure to upwelling. To address the discrepancies between negative effects of OA exposure in the laboratory and seemingly positive effects off OA exposure in the field we collected juvenile mussels from four separate locations on the northern California coast that vary in exposure to upwelling-driven OA and raised them under ambient, constantly acidified, or intermittently acidified seawater conditions. Half of the mussels in each of the experimental treatments were given access to either ambient or elevated food concentrations. Although higher food availability increased shell and overall mussel growth, variation in mussel life-history traits among locations appears to be driven primarily by inherent differences (i.e. genetics or epigenetics). In particular, overall growth, soft tissue mass, and shell dissolution in mussels were associated with source-specific upwelling strength while adductor muscle mass along with shell growth and strength of mussels were associated with source-specific levels of predation risk. Oxygen consumption of mussels did not significantly vary among food, pH or source location treatments, suggesting that differences in growth rates were not due to differences in differences in metabolic or energetic efficiencies between individuals. Although not statistically significant, mussels from areas of high crab predation risk tended to survive crab attacks in the lab better than mussels from other areas. My data suggests that the adaptive potential of M. californianus to respond to future OA conditions is dependent on local environmental factors such as upwelling strength, food availability, and predation risk. My study addresses a significant gap in our understanding of the mechanism behind conflicting observations of increased growth in the field associated with low pH and previous laboratory results, demonstrating the importance of environmental context in shaping the organismal response to current and future OA conditions.

Man T. D., 2018. The interactive effects of ocean acidification, food availability, and source location on the growth and physiology of the California mussel. MSc thesis, Humboldt State University, 69p. Thesis.

0 Responses to “The interactive effects of ocean acidification, food availability, and source location on the growth and physiology of the California mussel”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,123,853 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book