The impact of elevated CO2 on Prochlorococcus and microbial interactions with ‘helper’ bacterium Alteromonas

Prochlorococcus is a globally important marine cyanobacterium that lacks the gene catalase and relies on ‘helper’ bacteria such as Alteromonas to remove reactive oxygen species. Increasing atmospheric CO2 decreases the need for carbon concentrating mechanisms and photorespiration in phytoplankton, potentially altering their metabolism and microbial interactions even when carbon is not limiting growth. Here, Prochlorococcus (VOL4, MIT9312) was co-cultured with Alteromonas (strain EZ55) under ambient (400p.p.m.) and elevated CO2 (800p.p.m.). Under elevated CO2, Prochlorococcus had a significantly longer lag phase and greater apparent die-offs after transfers suggesting an increase in oxidative stress. Whole-transcriptome analysis of Prochlorococcus revealed decreased expression of the carbon fixation operon, including carboxysome subunits, corresponding with significantly fewer carboxysome structures observed by electron microscopy. Prochlorococcus co-culture responsive gene 1 had significantly increased expression in elevated CO2, potentially indicating a shift in the microbial interaction. Transcriptome analysis of Alteromonas in co-culture with Prochlorococcus revealed decreased expression of the catalase gene, known to be critical in relieving oxidative stress in Prochlorococcus by removing hydrogen peroxide. The decrease in catalase gene expression was corroborated by a significant ~6-fold decrease in removal rates of hydrogen peroxide from co-cultures. These data suggest Prochlorococcus may be more vulnerable to oxidative stress under elevated CO2 in part from a decrease in ecosystem services provided by heterotrophs like Alteromonas. This work highlights the importance of considering microbial interactions in the context of a changing ocean.

Hennon G. M. M., Morris J. J., Haley S. T., Zinser E. R., Durrant A. R., Entwistle E., Dokland T. & Dyhrman S. T., in press. The impact of elevated CO2 on Prochlorococcus and microbial interactions with ‘helper’ bacterium Alteromonas. The ISME Journal. Article (subscription required).

0 Responses to “The impact of elevated CO2 on Prochlorococcus and microbial interactions with ‘helper’ bacterium Alteromonas”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,041,154 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book