Posts Tagged 'article'

Coastal Management Journal – Ocean acidification: insight for policy and integrated management

Today the International Alliance to Combat Ocean Acidification, alongside several U.S. state partners released a special issue of Coastal Management Journal, “Ocean Acidification: Insight for Policy and Integrated Management,” published online by Taylor and Francis.

The special issue examines opportunities and challenges facing U.S. states in responding to ocean acidification (OA) and includes 42 authors representing government and non-government institutions across nine states.

Many of the authors are resource managers on the front lines of addressing OA, using a variety of strategies to assess information needs, develop data sets, build partnerships inside and outside state government and formulate approaches that link ocean change science to management at local and regional scales.

Impacts of climate change and increasing OA pose significant risk to states, communities and economies that enjoy and depend on thriving fisheries and shellfish production related to commercial, subsistence or cultural practices.  Although the issue consolidates current and emerging U.S. state policy directives and practices, local and international actors may benefit from lessons learned and case studies presented—further advancing subnational and national efforts to address climate and ocean change.

“Lessons learned and partnerships forged at a state level have strengthened regional alignment and international vision for action,” said Dr. Caren Braby, Oregon Department of Fish and Wildlife on the special issue’s contributors.

The issue is comprised of four peer-reviewed articles and two essays, including:

  • Opportunities for State Governments and In-Region Partners to Address Ocean Acidification Through Management and Policy Frameworks (Turner, et al.)
  • Understanding and Advancing Natural Resource Management in the Context of Changing Ocean Conditions (Keil, et al.)
  • Monitoring Ocean Acidification Within State Borders:  Lessons Learned from Washington State (Gonski, et al.)
  • Capacity Building to Address Ocean Change: Organizing Across Communities of Place, Practice and Governance to Achieve Ocean Acidification and Hypoxia Resilience in Oregon (Essay by Oregon Department of Fish and Wildlife.)
  • Community Science for Coastal Acidification Monitoring and Research (Gassett, et al.)
  • International and Domestic Leadership by U.S. States on Ocean Acidification (Essay by Ocean Conservancy.)

The Intergovernmental Panel on Climate Change (IPCC) Special Report on Ocean and Cryosphere in Changing Climate (IPCC, 2019) has emphasized that climate change is already having major impacts on our ocean. The report warns that ocean acidification is “virtually certain” to continue to be exacerbated by carbon emissions, with a high emissions path posing the most significant risks for severe and large changes.  The Paris Agreement brought into force by the United Nations Framework Convention on Climate Change (UNFCCC) provides a framework for 195 nations to reduce greenhouse gas emissions.  

It is against this backdrop that subnational governments, including U.S. states, are sharing information and responding to climate and ocean change by setting ambitious goals and targets of their own to mitigate, adapt and build resiliency.

“State have the advantage of being able to act quickly, innovate and experiment with programs, investments and pilot projects.  They are typically the primary regulator—or strong influencer—in implementing most ocean-based climate solutions and responses,” said Whitney Berry, Senior Manager of Climate Policy, Ocean Conservancy.

For more information, contact Jessie Turner at Jturner@cascadiapolicy.com

Continue reading ‘Coastal Management Journal – Ocean acidification: insight for policy and integrated management’

Royal Society Publishing: Ocean acidification in a geoengineering context

Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100.

Resource type: article

Resource format: document/pdf

The Royal Society Publishing: Philosophical Transactions of Royal Society A – Matematical, Physical and Engineering Sciences, 1 September 2012. Resource.

An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange

A successful integrated ocean acidification (OA) observing network must include (1) scientists and technicians from a range of disciplines from physics to chemistry to biology to technology development; (2) government, private, and intergovernmental support; (3) regional cohorts working together on regionally specific issues; …

Resource type: article

Resource format: document/pdf

Frontiers, 1 June 2019. Resource.

Introduccin a la acidificacion oceanica: lo que es, lo que sabemos y lo que puede suceder (Spanish)

Durante los Ultimos 200 años aproximadamente, la quema generalizada de combustibles fúsiles, la deforestación y la producción de cemento han liberado más de 500 mil millones de toneladas métricas de dióxido de carbono (CO2 ) a la atmósfera de las cuales aproximadamente la mitad en los últimos 30 años. Esta liberación masiva de carbono previamente ‘almacenado’ incrementa el efecto invernadero natural y pone en peligro la futura estabilidad del clima de la Tierra…

Resource type: article

Resource format: document/pdf

IUCN, 1 December 2017. Resource.

Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming

…As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms’ responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification…

Resource type: article

Resource format: document/pdf

Wiley, 1 February 2013. Resource.

Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions

Ocean acidification, via an anthropogenic increase in seawater carbon dioxide (CO2), is potentially a major threat to coral reefs and other marine ecosystems. However, our understanding of how natural short-term diurnal CO2 variability in coral reefs influences longer term anthropogenic ocean acidification remains unclear. Here, we combine observed natural carbonate chemistry variability with future carbonate chemistry predictions for a coral reef flat in the Great Barrier Reef based on the RCP8.5 CO2 emissions scenario…

Resource type: article

Resource format: webpage

Wiley, 1 January 2013. Resource.

Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios

Anthropogenic CO2 emissions directly affect atmospheric chemistry but also have a strong influence on the oceans. Gattuso et al., review how the physics, chemistry, and ecology of the oceans might be affected based on two CO2 emission trajectories: one business as usual and one with aggressive reductions…

Resource type: article

Resource format: document/pdf

AAAS – ScienceMag, 1 July 2015. Resource.

Coral reefs under rapid climate change and ocean acidification

Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2 degrees C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved…

Resource type: article

Resource format: document/pdf

AAAS – ScienceMag, 1 December 2007. Resource.

The geological record of ocean acidification

Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively.

Resource type: article

Resource format: document/pdf

AAAS – ScienceMag, 1 March 2012. Resource.

Detecting regional anthropogenic trends in ocean acidification against natural variability

…Ocean observations are severely limited with respect to providing reliable estimates of the signal-to-noise ratio of human-induced trends in carbonate chemistry against natural factors. Using three Earth system models we show that the current anthropogenic trend in ocean acidification already exceeds the level of natural variability by up to 30 times on regional scales…

Resource type: article

Resource format: webpage

Nature, 1 January 2012. Resource.

Economic costs of ocean acidification: a look into the impacts on global shellfish production

…By performing a partial-equilibrium analysis, we estimate global and regional economic costs of production loss of mollusks due to ocean acidification. Our results show that the costs for the world as a whole could be over 100 billion USD with an assumption of increasing demand of mollusks with expected income growths combined with a business-as-usual emission trend towards the year 2100…

Resource type: article

Resource format: document/pdf

Springer, 1 January 2012. Resource.

Ten ways states can combat ocean acidification (and why they should)

The ocean is becoming more acidic worldwide as a result of increased atmospheric carbon dioxide (CO2) and other pollutants. This fundamental change is likely to have substantial ecological and economic consequences globally. In this Article, we provide a toolbox for understanding and addressing the drivers of an acidifying ocean.

Resource type: article

Resource format: document/pdf

SelectedWorks, 1 January 2013. Resource.

Actualización de lo que sabemos sobre la acidificación de los océanos y de los principales retos globales (Spanish)

Es asombroso pensar que hace sólo diez años casi nadie había oído hablar de la acidificación
del océano. Ahora es mucho más ampliamente comprendido que la creciente cantidad
de dióxido de carbono (CO2) que emitimos en el aire por nuestras actividades está
reaccionando con el océano alterando su química, recorriéndolo a lo largo de la escala hacia
la acidez y, entre otros efectos, reduciendo la disponibilidad de iones de carbonato que
necesitan muchos animales marinos y plantas para construir sus conchas y esqueletos…

Resource type: article

Resource format: document/pdf

IAEA, 4 July 1905. Resource.

Measuring ocean acidification: new technology for a new era of ocean chemistry

Human additions of carbon dioxide to the atmosphere are creating a cascade of chemical consequences that will eventually extend to the bottom of all the world’s oceans.

Resource type: article

Resource format: document/pdf

ACS Publications: Environmental Science and Technology, 1 April 2014. Resource.

Forecasting impacts of ocean acidification on marine communities: utilizing volcanic CO2 vents as natural laboratories

Oceans have absorbed approximately 30% of anthropogenic CO2 emissions, causing a phenomenon known as ocean acidification. With surface ocean pH changing at a rapid pace, continued uptake of CO2 is expected to decrease ocean pH by 0.3 pH units as early as 2081…

Resource type: article

Resource format: document/pdf

Global Change Biology, 1 January 2021. Resource.

How much CO2 will we have in the air this year?

Carbon dioxide (CO2) is a gas that contributes to global warming. When we burn fuel (for example to drive cars or to generate power) we put more CO2 into the air, which contributes to climate change. Nature is very good at removing CO2 from the air. Trees need it to grow and the oceans can dissolve it. But not all the new CO2 is removed, so the amount in the air increases each year. Every year, we try to predict how much more CO2 we will have. For an accurate CO2 forecast, we must understand how human activity and natural ecosystems affect each other. In this article, we explain how we can make this forecast. For 2020, we predict that CO2 levels will increase faster than average…

Frontiers for Young Minds, 16 March 2021. Resource.

Resource type: article

Resource format: document/pdf

Tiny but powerful: how tiny amounts of certain gases can make a big difference in the earth’s climate

Comparable to carbon dioxide, dimethyl sulfide (DMS), and carbon monoxide (CO) are tiny gases that have a great impact on our climate. Though occurring only in very small amounts in the atmosphere they are climate influencers, especially in the Arctic. The Arctic is a unique place on Earth where all life is adapted to the extreme cold. Therefore, global warming is a great threat to the Arctic. DMS and CO are produced in the Arctic Ocean and can go into the atmosphere. There, CO may enhance the warming of the Arctic. On the other hand, DMS possibly cools the atmosphere because it helps forming clouds. The processes CO and DMS are involved in, are complex and will probably alter under a changing climate. It is important to understand these processes to get an idea of the future Arctic Ocean and climate to find ways to save the Arctic.

Frontiers for Young Minds, 18 February 2021. Resource.

Resource type: article

Resource format: document/pdf

Sculpture and new technologies in scientific educational outreach: 3D foraminiferal models as a referent of ocean acidification and climate change

The Foraminifera Project is a collaboration between researchers of the Faculty of Fine Arts and the Faculty of Geological Sciences at the Complutense University (UCM, Madrid, Spain). The work, based on scientific dissemination through art, is framed in the theme “Climate change and Ocean Acidification” as part of the course “Art, Science and Nature” of the Master’s Degree in Research in Art and Creation (Faculty of Fine Arts, UCM). The team used recent sediment samples from Indian Ocean and Red Sea that contained healthy and unhealthy foraminifera specimens to create 3D specimen models. These models were made using traditional sculpture techniques, photogrammetry, and 3D printing to show different states of foraminifera dissolution and corrosion from ocean acidification. The end result of this project resulted in nine interactive pieces which were part of the exhibition “Drift & Migrate” open to the public during the month of November 2019 in the exhibition hall of the Faculty of Fine Arts (UCM). The 3D models of foraminifera were displayed with educational graphics and blind-accesible explanatory signage (Braille) to share the scientific facts of foraminifera and their role in the ocean ecosystem. The main objective of the collaboration is to raise awareness of anthropogenic effects on foraminifera and the marine ecosystems in general and to expand research opportunities between the arts and sciences at the university.

Continue reading ‘Sculpture and new technologies in scientific educational outreach: 3D foraminiferal models as a referent of ocean acidification and climate change’

  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: