Natural CO2 seeps reveal adaptive potential to ocean acidification in fish

Volcanic CO2 seeps are natural laboratories that can provide insights into the adaptation of species to ocean acidification. Whilst many species are challenged by reduced pH levels, some species benefit from the altered environment and thrive. Here, we explore the molecular mechanisms of adaptation to ocean acidification in a population of a temperate fish species that experiences increased population sizes under elevated CO2. Fish from CO2 seeps exhibited an overall increased gene expression in gonad tissue compared to those from ambient CO2 sites. Up‐regulated genes at CO2 seeps are possible targets of adaptive selection as they can directly influence the physiological performance of fishes exposed to ocean acidification. Most of the up‐regulated genes at seeps were functionally involved in the maintenance of pH homeostasis and increased metabolism, and presented a deviation from neutral evolution expectations in their patterns of DNA polymorphisms, providing evidence for adaptive selection to ocean acidification. The targets of this adaptive selection are likely regulatory sequences responsible for the increased expression of these genes which would allow a fine‐tuned physiological regulation to maintain homeostasis and thrive at CO2 seeps. Our findings reveal that standing genetic variation in DNA sequences regulating the expression of genes in response to a reduced pH environment could provide for adaptive potential to near‐future ocean acidification in fishes. Moreover, with this study we provide a forthright methodology combining transcriptomics and genomics which can be applied to infer the adaptive potential to different environmental conditions in wild marine populations.

Petit‐Mart N., Nagelkerken I., Connel S. D. & Schunter C., in press. Natural CO2 seeps reveal adaptive potential to ocean acidification in fish. Evolutionary Applications.  Article.

0 Responses to “Natural CO2 seeps reveal adaptive potential to ocean acidification in fish”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Follow AnneMarin on Twitter

Archives

Powered by FeedBurner

Blog Stats

  • 1,451,818 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book