Ocean acidification but not elevated spring warming threatens a European Seas predator

Highlights

  • Treatments in marine climate research often ignore important, natural variation
  • Fish embryos were exposed to stable versus warming temperatures (T) and high pCO2
  • Development, hatching and metabolism of a predatory fish (garfish) were examined
  • Increased spring warming benefitted garfish but stable high T and pCO2 were lethal
  • Allospecific prey of garpike have adapted suggesting future, trophodynamic change

Abstract

Ocean acidification has the potential to negatively affect marine ecosystems by influencing the development and metabolism of key members of food webs. The garfish, Belone belone, is an ecologically important predator in European regional seas and it remains unknown how this species will be impacted by projected changes in climate. We artificially fertilized and reared garfish embryos until hatch at present (400 μatm) and future (1300 μatm) pCO2 levels within three temperature treatments, i.e. two daily warming regimes and one constant high temperature (17°C). For the two warming treatments, embryos were fertilized at 13°C and experienced 0.1 or 0.3°C/day warming. The 0.1°C/day treatment served as control: 13°C was the in situ temperature of parental fish in the Southwest Baltic Sea and 0.1°C/day is the average warming rate experienced by embryos of this population in nature. Survival was drastically reduced at both future pCO2 and at the constant high temperature while the highest survival in any treatment was observed at 0.3°C/day warming. The proportion of embryos with morphological deformities increased with elevated pCO2 but not temperature. Hatch characteristics and physiological measures such as heart rate and critical thermal ranges, however, were not affected by pCO2 but were influenced by temperature. Our results suggest that garfish in the Baltic Sea will benefit from projected increased rates of spring warming but not the concomitant increase in pCO2. Previous studies on the impacts of ocean acidification on resident fishes in the Baltic Sea indicate that this piscivorous fish is at higher risk compared to its prey which may have broader implications for the future trophodynamic structure and function of the coastal food web.

Alter K. & Peck M. A.., in press. Ocean acidification but not elevated spring warming threatens a European Seas predator. Science of The Total Environment. Article.

0 Responses to “Ocean acidification but not elevated spring warming threatens a European Seas predator”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,442,665 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives