pH and other upwelling hydrographic drivers in regulating copepod reproduction during the 2015 El Niño event: a follow-up study

Highlights

• High salinity El Niño 2015 overlaid continuous low pH values observed in the upwelling site.

• Environmental pH-salinity and phenological regulation were detected in copepod reproduction.

• Upwelling pH-variations and high salinity El Niño events can underpin plankton responses to climate change.

Abstract

The combined upwelling-El Niño (EN) event regulation of the numerically dominant Acartia tonsa (Crustacea, Copepoda) reproduction was examined in a year-round upwelling system (23°S) of the Humboldt Eastern Boundary Upwelling System (EBUS) during the EN 2015. A previous analysis of the environmental regulation of this system is extended here by considering complementary oceanographic information (sea level, stratification indexes) and additional reproductive traits, such as maximum (MaxEPR), median (MedianEPR) and prevalence of egg producing females over a period of six months. Furthermore, field minimum-maximum pH levels were reproduced in three 96-h incubation experiments conducted under variable salinity conditions to evaluate copepod mean EPR, egg size and hatching success. Supporting previous assertions, the warm-high salinity EN 2015 was observed in the study site separately from hydrographic conditions associated with upwelling to non-upwelling regimes. Analysis of similarity-distance (Distance based Linear Model (DistLM)) and normalized data (separate-slope comparison under a General Linear Model (GLM)) showed that reproductive traits were regulated by specific combinations of ambient conditions, and that this regulation was also sensitive to the prevailing hydrographic regime. Thus, upwelling to non-upwelling transitions changing the pH, and EN-associated salinity and stratification shifts, were significantly and strongly linked to almost all reproductive traits (DistLM). Slope comparison (GLM) indicated MaxEPR and MedianEPR variations also underlie the phenology, highlighting the relationship between pH and salinity with biological variations. In conjunction with experimental observations, the current study consistently suggests that pH-variations in the upwelling realm, and EN hydrographic perturbations might underpin responses of plankton populations to climate change in productive EBUS.

Aguilera V. M., 2020. pH and other upwelling hydrographic drivers in regulating copepod reproduction during the 2015 El Niño event: a follow-up study. 234: 106640. doi: 10.1016/j.ecss.2020.106640. Article (subscription required).


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading