Synergistic effects of nano-ZnO and low pH of sea water on the physiological energetics of the thick shell mussel Mytilus coruscus

In order to investigate the ecotoxicological effects of nano-ZnO particles and seawater acidification on marine bivalves, the thick shell mussels, Mytilus coruscus were subjected to joint treatments with different nano-ZnO concentrations (0 [control], 2.5 and 10 mg L-1 [high]) under two pH levels (7.7 [low]and 8.1 [control]) for 14 days. The results showed that respiration rate (RR), absorption efficiency (AE), clearance rate (CR), O:N ratio and scope for growth (SFG) were significantly reduced with nano-ZnO concentration increase, but ammonium excretion rate (ER) was increased. Low pH significantly reduced CR, RR, SFG, and O:N ratio of the mussels especially under high nano-ZnO conditions, and significantly increased ER. Principal component analysis (PCA) showed consistent relationships among most tested parameters, especially among SFG, RR, O:N ratio and CR under the normal pH and 0 nano-ZnO conditions. Therefore, seawater acidification and nano-ZnO interactively impact the ecophysiological responses of mussels and cause more severe effects when they appear concurrently.

Shang Y., Lan Y., Liu Z., Kong H., Huang X., Wu F., Liu L., Hu M., Huang W. & Wang Y., 2018. Synergistic effects of nano-ZnO and low pH of sea water on the physiological energetics of the thick shell mussel Mytilus coruscus. Frontiers in Physiology 9: 757. doi: 10.3389/fphys.2018.00757. Article.

 

0 Responses to “Synergistic effects of nano-ZnO and low pH of sea water on the physiological energetics of the thick shell mussel Mytilus coruscus”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,096,399 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book