Effects of CO2 enrichment on benthic primary production and inorganic nitrogen fluxes in two coastal sediments

Ocean acidification may alter the cycling of nitrogen in coastal sediment and so the sediment–seawater nitrogen flux, an important driver of pelagic productivity. To investigate how this perturbation affects the fluxes of NOX (nitrite/nitrate), NH4+ and O2, we incubated estuarine sand and subtidal silt in recirculating seawater with a CO2-adjusted pH of 8.1 and 7.9. During a 41-day incubation, the seawater kept at pH 8.1 lost 97% of its NOX content but the seawater kept at pH 7.9 lost only 18%. Excess CO2 increased benthic photosynthesis. In the silt, this was accompanied by a reversal of the initial NOX efflux into influx. The estuarine sand sustained its initial NOX influx but, by the end of the incubation, released more NH4+ at pH 7.9 than at pH 8.1. We hypothesise that these effects share a common cause; excess CO2 increased the growth of benthic microalgae and so nutrient competition with ammonia oxidising bacteria (AOB). In the silt, diatoms likely outcompeted AOB for NH4+ and photosynthesis increased the dark/light fluctuations in the pore water oxygenation inhibiting nitrification and coupled nitrification/denitrification. If this is correct, then excess CO2 may lead to retention of inorganic nitrogen adding to the pressures of increasing coastal eutrophication.

Vopel K., Del-Río C. & Pilditch C. A., 2018. Effects of CO2 enrichment on benthic primary production and inorganic nitrogen fluxes in two coastal sediments. Scientific Reports 8: 1035. doi:10.1038/s41598-017-19051-w. Article.

 

0 Responses to “Effects of CO2 enrichment on benthic primary production and inorganic nitrogen fluxes in two coastal sediments”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,113,722 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book