Acclimation of bloom-forming and perennial seaweeds to elevated pCO2 conserved across levels of environmental complexity

Macroalgae contribute approximately 15% of the primary productivity in coastal marine ecosystems, fix up to 27.4 Tg of carbon per year, and provide important structural components for life in coastal waters. Despite this ecological and commercial importance, direct measurements and comparisons of the short-term responses to elevated pCO2 in seaweeds with different life-history strategies are scarce. Here, we cultured several seaweed species (bloom-forming/non-bloom-forming/perennial/annual) in the laboratory, in tanks in an in-door mesocosm facility, and in coastal mesocosms under pCO2 levels ranging from 400 μatm to 2000 μatm. We find that, across all scales of the experimental set-up, ephemeral species of the genus Ulva increase their photosynthesis and growth rates in response to elevated pCO2 the most, whereas longer-lived perennial species show a smaller increase or a decrease. These differences in short-term growth- and photosynthesis rates are likely to give bloom-forming green seaweeds a competitive advantage in mixed communities, and our results thus suggest that coastal seaweed assemblages in eutrophic waters may undergo an initial shift toward communities dominated by bloom-forming, short-lived seaweeds.

Xu D., Schaum C.-E., Lin F., Sun K., Munroe J. R., Zhang X. W., Fan X., Teng L. H., Wang Y. T., Zhuang Z. Z. & Ye N. H., in press. Acclimation of bloom-forming and perennial seaweeds to elevated pCO2 conserved across levels of environmental complexity. Global Change Biology. Article (subscription required).

0 Responses to “Acclimation of bloom-forming and perennial seaweeds to elevated pCO2 conserved across levels of environmental complexity”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,007,682 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book