Chronic exposure to low pH negatively impacts blue mussels (Mytilus edulis) from an intertidal zone

In intertidal ecosystems, mussels experience daily fluctuations in pH due to the biological activity, intertidal currents, freshwater inflow and anthropogenic influences. This study aimed to determine whether these short-term fluctuations enable blue mussels (Mytilus edulis) to endure long-term exposure to low pH using biological indicators (mortality rates, oxidative stress and enzyme activities). Mussels were collected from an intertidal zone in the western coast of Morocco and exposed for 6 months to seawater pH ranging from 6.6 to 8.0. Our results showed that mortality rates increased exponentially with decreasing pH, while growth rates declined linearly. At pH 6.6, mortality was observed after approximately 15 days and reached 22% at 6 months. Low pH negatively impacted the function of metabolic enzymes (glyceraldehyde-3-phosphate dehydrogenase and succinate dehydrogenase), and caused oxidative stress (elevated lipid peroxidation and protein oxidation) in the mantle, digestive gland, and whole tissues. Additionally, the activity of antioxidant enzymes catalase and superoxide dismutase increased in response to higher levels of reactive oxygen species at low pH. These findings suggest that, although mussels can inhabit intertidal zones with short-term pH fluctuations, this does not equip them with the ability to deal with chronic exposure to low pH (6.6), significantly impairing their fitness.

Iddar A., El Mzibri M., Laissaoui A., Metian M. & Dupont S., in press. Chronic exposure to low pH negatively impacts blue mussels (Mytilus edulis) from an intertidal zone. Marine Biology Research. Article (restricted access).

0 Responses to “Chronic exposure to low pH negatively impacts blue mussels (Mytilus edulis) from an intertidal zone”



  1. Leave a Comment

Leave a Reply




Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading