Early development and metabolic rate of the sea louse Caligus rogercresseyi under different scenarios of temperature and pCO2

Highlights

  • The temperature has a significant effect on the hatching time of C. royercresseyi.

  • Combination of pCO2 and temperature has a significant effect on survival in C. rogercresseyi.

  • The combination of pCO2 and temperature had no impact on the size of nauplius I, nauplius II and copepodid stage.

  • Only the temperature has a significant effect on oxygen consumption rate of C. royercresseyi.

Abstract

Anthropogenic CO2 emissions have led to ocean acidification and a rise in the temperature. The present study evaluates the effects of temperature (10, 15 and 20 °C) and pCO2 (400 and 1200 μatm) on the early development and oxygen consumption rate (OCR) of the sea louse Caligus rogercresseyi. Only temperature has an effect on the hatching and development times of nauplius I. But both factors affected the development time of nauplius II (<temperature = longer development time). Copepodid survival time was also affected by temperature and pCO2, at 10 °C and 400 μatm, survival was 30 and 44% longer than at 15 and 20 °C. OCRs were impacted by temperature but not by pCO2. In all treatments, OCR was lower for nauplius II than for the copepodid. Our results show the need to further evaluate the effects of a combination of environmental drivers on the performance of C. rogercresseyi, in a changing and uncertain future.

Montory J. A., Cumillaf J. P., Gebauer P., Urbina M., Cubillos V. M., Navarro J. M., Marín S. L.,  & Cruces E., 2020. Early development and metabolic rate of the sea louse Caligus rogercresseyi under different scenarios of temperature and pCO2. Marine Environmental Research 162: 105154. doi: 10.1016/j.marenvres.2020.105154. Article (subscription required).


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: