Effect of pH on the bacterial community present in larvae and spat of Crassostrea gigas

Changes in marine environments, including pH changes, have been correlated to alterations in the physiology and disease susceptibility of cultured organisms at the early stages of development. In this study, high-throughput sequencing of the V3-V4 region of the 16S rRNA gene was performed to evaluate the bacterial
biodiversity of Crassostrea gigas pediveliger larvae and spat under acidic stress compared to that of larvae at normal pH value. The evaluation was performed in an experimental system with continuous water flow and pH
manipulation by CO2 bubbling to simulate acidification (pH 7.38 ± 0.039), using the current ocean pH conditions (pH 8.116 ± 0.023) as a reference. The results indicated that the bacterial communities associated with both pediveliger larvae and spat were modified in response to acidic conditions. The families Rhodobacteraceae and Campylobacteraceae were the most affected by the change in pH, with increases in Vibrionaceae in pediveliger larvae and Planctomycetaceae and Phyllobacteriaceae in spat detected. The results of this study demonstrate that the bacterial communities associated with C. gigas pediveliger larvae and spat are responsive to changes in ocean acidification


Flores-Higuera F. A., Luis-Villaseñor I. E., Rochin-Arenas J. A., Gómez-Gil B., Mazón-Suástegui J. M., Voltolina D. & Medina-Hernández D., 2019. Effect of pH on the bacterial community present in larvae and spat of Crassostrea gigas. Latin American Journal of Aquatic Research 47 (3): 513-523. Article.

0 Responses to “Effect of pH on the bacterial community present in larvae and spat of Crassostrea gigas”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,326,673 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book