Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization

Increasing atmospheric pCO2 leads to seawater acidification, which has attracted considerable attention due to its potential impact on the marine biological carbon pump and function of marine ecosystems. Alternatively, phytoplankton cells living in coastal waters might experience increased pH/decreased pCO2 (seawater alkalization) caused by metabolic activities of other photoautotrophs, or after microalgal blooms. Here we grew Thalassiosira weissflogii (diatom) at seven pCO2 levels, including habitat-related lowered levels (25, 50, 100, and 200 µatm) as well as present-day (400 µatm) and elevated (800 and 1600 µatm) levels. Effects of seawater acidification and alkalization on growth, photosynthesis, dark respiration, cell geometry, and biogenic silica content of T. weissflogii were investigated. Elevated pCO2 and associated seawater acidification had no detectable effects. However, the lowered pCO2 levels (25 ∼ 100 µatm), which might be experienced by coastal diatoms in post-bloom scenarios, significantly limited growth and photosynthesis of this species. In addition, seawater alkalization resulted in more silicified cells with higher dark respiration rates. Thus, a negative correlation of biogenic silica content and growth rate was evident over the pCO2 range tested here. Taken together, seawater alkalization, rather than acidification, could have stronger effects on the ballasting efficiency and carbon export of T. weissflogii.

Li F., Fan J., Hu L., Beardall J. & Xu J., 2019. Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization. ICES Journal of Marine Science fsz028. doi: 10.1093/icesjms/fsz028. Article (subscription required).

0 Responses to “Physiological and biochemical responses of Thalassiosira weissflogii (diatom) to seawater acidification and alkalization”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,284,720 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book