Phenotypic plasticity at the edge: contrasting population‐level responses at the overlap of the leading and rear edges of the geographical distribution of two Scurria limpets

Aim
To examine the role of ocean temperature and chemistry as drivers of interpopulation differences in multiple phenotypic traits between rear and leading edge populations of two species of limpet.

Location
The coast of north‐central Chile, western South America.

Taxon
Mollusca, Gastropoda (Lottidae).

Methods
We used field and laboratory experiments to study the ecology and physiology of individuals from populations located at the overlap of the rear and leading edges of their respective geographical distributions. At the same time, we characterized local environmental regimes, measuring seawater physical and chemical properties.

Results
Towards the edge of their range, individuals from the leading edge species gradually reduced their shell length, metabolic rate and thermal response capacity, and increased carbonate content in their shells. Individuals of the rear edge species showed dissimilar responses between sites. Contrasting behavioural responses to experimental heating reconciled observations of an unintuitive higher maximal critical temperature and a smaller thermal safety margin for individuals of the rear edge populations. Physical–chemical characterization of seawater properties at the site located on the core of the upwelling centre showed extreme environmental conditions, with low oxygen concentration, high pCO2 and the episodic presence of corrosive seawater. These challenging environmental conditions were reflected in reduced growth for both species.

Main conclusions
We found different spatial patterns of phenotypic plasticity in two sister species around the leading and trailing edges of their distributions. Our results provide evidence that environmental conditions around large upwelling centres can maintain biogeographical breaks through metabolic constraints on the performance of calcifying organisms. Thus, local changes in seawater chemistry associated with coastal upwelling circulation emerge as a previously overlooked driver of marine range edges.

Broitman B. R., Aguilera M. A., Lagos N. A. & Lardies M. A., 2018. Phenotypic plasticity at the edge: Contrasting population‐level responses at the overlap of the leading and rear edges of the geographical distribution of two Scurria limpets. Journal of Biogeography 45(10): 2314-2325. Article (subscription required).

0 Responses to “Phenotypic plasticity at the edge: contrasting population‐level responses at the overlap of the leading and rear edges of the geographical distribution of two Scurria limpets”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,135,555 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book