Trans‐life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens

Aim
Experimental simulation of near‐future ocean acidification (OA) has been demonstrated to affect growth and development of echinoderm larval stages through energy allocation towards ion and pH compensatory processes. To date, it remains largely unknown how major pH regulatory systems and their energetics are affected by trans‐generational exposure to near‐future acidification levels.

Methods
Here we used the common sea star Asterias rubens in a reciprocal transplant experiment comprising different combinations of OA scenarios, in order to study trans‐generational plasticity using morphological and physiological endpoints.

Results
Acclimation of adults to pHT 7.2 (pCO2 3500μatm) led to reductions in feeding rates, gonad weight, and fecundity. No effects were evident at moderate acidification levels (pHT 7.4; pCO2 2000μatm). Parental pre‐acclimation to pHT 7.2 for 85 days reduced developmental rates even when larvae were raised under moderate and high pH conditions, whereas pre‐acclimation to pHT 7.4 did not alter offspring performance. Microelectrode measurements and pharmacological inhibitor studies carried out on larval stages demonstrated that maintenance of alkaline gastric pH represents a substantial energy sink under acidified conditions that may contribute up to 30% to the total energy budget.

Conclusion
Parental pre‐acclimation to acidification levels that are beyond the pH that is encountered by this population in its natural habitat (e.g. pHT 7.2) negatively affected larval size and development, potentially through reduced energy transfer. Maintenance of alkaline gastric pH and reductions in maternal energy reserves probably constitute the main factors for a reduced juvenile recruitment of this marine keystone species under simulated OA.

Hu M. Y., Lein E., Bleich M., Melzner F. & Stumpp M., in press. Trans‐life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens. Acta Physiologica. Article.

0 Responses to “Trans‐life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,123,396 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book