Ecological complexity buffers the impacts of future climate on marine consumers

Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities1,2,3. Yet, our understanding of the ecological imprint of ocean acidification (elevated CO2) and climate change (elevated temperature) is largely based on reports of negative effects on single species in simplified laboratory systems4,5. By combining a large mesocosm experiment with a global meta-analysis, we reveal the capacity of consumers (fish and crustaceans) to resist the impacts of elevated CO2. While individual behaviours were impaired by elevated CO2, consumers could restore their performances in more complex environments that allowed for compensatory processes. Consequently, consumers maintained key traits such as foraging, habitat selection and predator avoidance despite elevated CO2 and sustained their populations. Our observed increase in risk-taking under elevated temperature, however, predicts greater vulnerability of consumers to predation. Yet, CO2 as a resource boosted the biomass of consumers through species interactions and may stabilize communities by countering the negative effects of elevated temperature. We conclude that compensatory dynamics inherent in the complexity of nature can buffer the impacts of future climate on species and their communities.

Goldenberg S. U., Nagelkerken I., Marangon E., Bonnet A., Ferreira C. M. & Connell S. D., 2018. Ecological complexity buffers the impacts of future climate on marine consumers. Nature Climate Change 8: 229–233. Article (subscription required).

 

0 Responses to “Ecological complexity buffers the impacts of future climate on marine consumers”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,096,417 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book