The regulation of coralline algal physiology, an in-situ study of Corallina officinalis (Corallinales, Rhodophyta)

Calcified macroalgae are critical components of marine ecosystems worldwide, but face considerable threat both from climate change (increasing water temperatures) and ocean acidification (decreasing ocean pH and carbonate saturation). It is thus fundamental to constrain the relationships between key abiotic stressors and the physiological processes that govern coralline algal growth and survival. Here we characterize the complex relationships between the abiotic environment of rock pool habitats, and the physiology of the geniculate red coralline alga, Corallina officinalis (Corallinales, Rhodophyta). Paired assessment of irradiance, water temperature and carbonate chemistry, with C. officinalis net production (NP), respiration (R) and net calcification (NG) was performed in a south-west UK field site, at multiple temporal scales (seasonal, diurnal and tidal). Strong seasonality was observed in NP and night-time R, with a Pmax of 22.35 μmol DIC gDW−1 h−1, Ek of 300 μmol photons m−2 s−1 and R of 3.29 μmol DIC gDW−1 −1 determined across the complete annual cycle. NP showed a significant exponential relationship with irradiance (R2 = 0.67), although was temperature dependent given ambient irradiance > Ek for the majority of the annual cycle. Over tidal emersion periods, dynamics in NP highlighted the ability of C. officinalis to acquire inorganic carbon despite significant fluctuations in carbonate chemistry. Across all data, NG was highly predictable (R2 = 0.80) by irradiance, water temperature and carbonate chemistry, providing a NGmax of 3.94  μmol CaCO3 gDW−1 h−1, and Ek of 113 μmol photons m−2 s−1. Light-NG showed strong seasonality and significant coupling to NP (R2 = 0.65), as opposed to rock pool water carbonate saturation. In contrast, the direction of dark-NG (dissolution vs. precipitation) was strongly related to carbonate saturation, mimicking abiotic precipitation dynamics. Data demonstrated that C. officinalis is adapted to both long-term (seasonal) and short-term (tidal) variability in environmental stressors, although the balance between metabolic processes and the external environment may be significantly impacted by future climate change.

Williamson C. J., Perkins R., Voller M., Yallop M. L. & Brodie J., 2017. The regulation of coralline algal physiology, an in-situ study of Corallina officinalis (Corallinales, Rhodophyta). Biogeosciences Discussions 1-37. Article.

0 Responses to “The regulation of coralline algal physiology, an in-situ study of Corallina officinalis (Corallinales, Rhodophyta)”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,045,817 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book