Impacts of CO2-induced ocean acidification on predator detection ability and developementof temperate fish

Ocean acidification, caused by elevated levels of atmospheric carbon dioxide (CO2), is recognized as a serious threat to marine ecosystems. Until now, most studies have focused on marine calcifying organisms, due to dependence on calcium carbonate, which is likely to become limited under future acidification scenarios. Less attention has been given to fish, but recent studies on the early life stages suggest that behavior, growth, development and otolith size may be highly affected by increasing CO2 levels. Other studies, on the other hand, fail to detect negative effects, suggesting species-specific vulnerabilities to increasing concentrations of CO2 and point to a need of further research. Here we tested the effects of CO2-induced ocean acidification on the early life stages of a temperate marine fish, the clingfish Lepadogaster lepadogaster, by rearing larvae since hatching in control and high pCO2 conditions. Size-at-age metrics and otolith size were examined in pre-settlement stage larvae. Additionally, behavioral response to a predator odour was tested in L. lepadogaster larvae and in Atherina presbyter larvae, maintained in high pCO2 conditions. Recognition of predator odours is a key behavior for predator avoidance and survival, and is one of the most commonly affected behaviors in fishes exposed to high CO2 levels. Results suggest that early life stages of L. lepadogaster might be resilient to future scenarios of ocean acidification, whereas A. presbyter might be more susceptible, with potential impacts on its future survival. Future studies should address species capacity to adapt to the predicted ocean acidification over the next century.

Martins Gonçalves S. I., 2017. Impacts of CO2-induced ocean acidification on predator detection ability and developementof temperate fish. MSc thesis, Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA), 51 p. Thesis.


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: