Marine fish intestine responds to ocean acidification producing more carbonate aggregates

Marine fish contribute to the carbon cycle by producing mineralized intestinal aggregates generated as by-products of their osmoregulation. Here we aimed at characterizing the control of intestinal aggregate production in the gilthead sea bream in response to near future increases of environmental CO2. Our results demonstrate that hypercapnia (800 and 1200 μatm CO2) elicits higher intestine epithelial HCO3- secretion and the subsequent parallel increase of intestinal aggregate production when compared to present values (400 μatm CO2). Intestinal gene expression analysis revealed the up-regulation of crucial transport mechanisms involved not only in the intestinal secretion cascade (Slc4a4, Slc26a3 and Slc26a6) of sea bream, but also in other mechanisms involved in intestinal ion uptake linked to water absorption such as NKCC2 and the Aquaporin 1b. These results highlight the important role of fish in the marine carbon cycle, and their potential growing impact of intestinal biomineralization processes in the scenario of ocean acidification.

Gregorio S. F., Ruiz-Jarabo I., Carvalho E. S. M. & Fuentes J., in press. Marine fish intestine responds to ocean acidification producing more carbonate aggregates. bioRxiv. Article.

0 Responses to “Marine fish intestine responds to ocean acidification producing more carbonate aggregates”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 991,851 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book