Impact of climate change and ocean acidification on the marine nitrogen cycle

The marine nitrogen cycle is responsible for two climate feedbacks in the Earth System. Firstly, it modulates the fixed nitrogen pool available for phytoplankton growth and hence it modulates in part the strength of the biological pump, one of the mechanisms contributing to the oceanic uptake of anthropogenic CO2. Secondly, the nitrogen cycle produces a powerful greenhouse gas and ozone (O3) depletion agent called nitrous oxide (N2O). Future changes of the nitrogen cycle in response to global warming, ocean deoxygenation and ocean acidification are largely unknown. Processes such as N2-fixation, nitrification, denitrification and N2O production will experience changes under the simultaneous effect of these three stressors. Global ocean biogeochemical models allow us to study such interactions. Using NEMO-PISCES and the CMIP5 model ensemble we project changes in year 2100 under the business-as-usual high CO2 emissions scenario in global scale N2-fixation rates, nitrification rates, N2O production and N2O sea-to-air fluxes adding CO2 sensitive functions into the model parameterizations. Second order effects due to the combination of global warming in tandem with ocean acidification on the fixed nitrogen pool, primary productivity and N2O radiative forcing feedbacks are also evaluated in this thesis.

Martinez-Rey J., 2015. Impact of climate change and ocean acidification on the marine nitrogen cycle. PhD thesis, Universite de Versailles Saint-Quentin-en-Yvelines, 181 pp. Thesis (subscription required).


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: