The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis

The effects of elevated temperature and high pCO2 on the metabolism of Galaxea fascicularis were studied with oxygen and pH microsensors. Photosynthesis and respiration rates were evaluated from the oxygen fluxes from and to the coral polyps. High-temperature alone lowered both photosynthetic and respiration rates. High pCO2 alone did not significantly affect either photosynthesis or respiration rates. Under a combination of high-temperature and high-CO2, the photosynthetic rate increased to values close to those of the controls. The same pH in the diffusion boundary layer was observed under light in both (400 and 750 ppm) CO2 treatments, but decreased significantly in the dark as a result of increased CO2. The ATP contents decreased with increasing temperature. The effects of temperature on the metabolism of corals were stronger than the effects of increased CO2. The effects of acidification were minimal without combined temperature stress. However, acidification combined with higher temperature may affect coral metabolism due to the amplification of diel variations in the microenvironment surrounding the coral and the decrease in ATP contents.

Agostini S., Fujimura H., Higuchi T., Yuyama I., Casareto B. E., Suzuki Y. & Nakano Y., in press. The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis.
Comptes Rendus Biologies. Article (subscription required).

0 Responses to “The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,417,852 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives