Anthropogenic greenhouse gas emissions increase sea surface temperature and acidification, inhibiting calcification of reef-building corals. While ocean acidification is known to hinder skeletal development of newly settled coral recruits, little is known of its effects on older purebred or interspecific hybrid recruits, or its combined effects with temperature. Using 3D X-ray microscopy, we found that predicted mid-century ocean warming and acidification conditions (28 °C, 685 ppm pCO2) negatively affected the skeletal development of 7-month-old Acropora purebreds and hybrids in one direction (Acropora cf. kenti mother x Acropora loripes father). Conversely, the skeletal parameters of reciprocal hybrids (A. loripes mother x A. cf. kenti father) remained unaffected. Skeletal measurements taken from 3D data revealed patterns overlooked by previous 2D measurements, leading support to the likelihood of hybrid vigour in hybrids of A. loripes (mother) and A. cf. kenti (father) and the potential of interspecific hybridization as a reef restoration tool to enhance coral resilience.
Meyers L., Shaw J., Clode P., Harrison P., van Oppen M. J. & Chan W. Y., in press. Skeletal morphometrics suggests high fitness of hybrid coral recruits under ocean warming and acidification. Coral Reefs. Article.


