Elevated CO2 modulates the physiological responses of Thalassiosira pseudonana to ultraviolet radiation


  • High CO2 exacerbated the UVR-induced inhibition on PSII activity.
  • UVR stimulated the removal rates of both PsbA and PsbD.
  • The removal of PsbD declined by high CO2 under the exposure of UVR.
  • High CO2 reversed the UVR-induced YNPQ to YNo.


Diatoms account for a large proportion of marine primary productivity, they tend to be the predominant species in the phytoplankton communities in the surface ocean with frequent and large light fluctuations. To understand the impacts of increased CO2 on diatoms’ capacity in exploitation of variable solar radiation, we cultured a model diatom Thalassiosira pseudonana with 400 or 1000ppmv CO2 and exposed it to high photosynthetically active radiation (PAR) alone or PAR plus ultraviolet radiation (UVR) to examine its physiological performances. The results showed that the maximum photochemical efficiency (Fv/fm) was significantly reduced by high PAR and PAR + UVR in T. pseudonana, UVR-induced inhibition on PSII activity was exacerbated by high CO2. PSII activity drops coincide approximately with PsbA content in the cells exposed to high PAR or PAR + UVR, which was pronounced at high CO2. The removal of PsbD in T. pseudonana cells declined under high CO2 during UVR exposure, limiting the repair capacity of PSII. In addition, high CO2 reversed the induction of energy-dependent form of NPQ by UVR to the increase of Y(No), indicating the severe damage of the photoprotective reactions. Our findings suggest that the adverse impacts of UVR on PSII function of T. pseudonana were aggravated by the elevated CO2 through modulating its capacity in repair and protection, which thereby would influence its abundance and competitiveness in phytoplankton communities.

Zang S., Xu Z., Yan F. & Wu H., 2022. Elevated CO2 modulates the physiological responses of Thalassiosira pseudonana to ultraviolet radiation. Journal of Photochemistry and Photobiology B: Biology 236: 112572. doi: 10.1016/j.jphotobiol.2022.112572. Article.

  • Reset


OA-ICC Highlights